Free Access
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 2, 2015
Page(s) 139 - 146
Published online 17 April 2015
  • Albergoni V., Piccini E. and Coppellotti O., 1980. Response to heavy metals in organisms. I Excretion and accumulation of physiological and non-physiological metals in Euglena gracilis. Comp. Biochem. Phys., 67c, 121–127. [Google Scholar]
  • Al-Najar H., Kaschl A., Schultz R. and Romheld V., 2005. Effect of thallium fractions in the soil and pollution origins on Tl uptake by hyperaccumulator plants: a key factor for the assessment of phytoextraction. Int. J. Phytorem., 7, 55–67. [CrossRef] [Google Scholar]
  • Arzate S.G. and Santamaria A., 1998. Thallium toxicity. Toxicol. Lett., 99, 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Augustynowicz J., Tokarz K., Baran A. and Płachno B.J., 2014. Phytoremediation of water polluted by Tl, Cd, Zn and Pb with the use of macrophyte Callitriche cophocarpa. Arch. Environ. Contam. Toxicol., 66, 572–581. [CrossRef] [PubMed] [Google Scholar]
  • Avery S.V., Codd G.A. and Gadd G.M., 1991. Caesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC6803. J. Gen. Microbiol., 137, 405–413. [CrossRef] [Google Scholar]
  • Babić M., Radić S., Cvjetko P., Roje V., Pevalek-Kozlina B. and Pavlica M., 2009. Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquat. Bot., 91, 166–172. [CrossRef] [Google Scholar]
  • Babula P., Adam V., Opatrilova R., Zehnalek J., Havel L. and Kizek R., 2008. Uncommon heavy metals, metalloids and their plant toxicity; a review. Environ. Chem. Lett., 6, 189–213. [CrossRef] [Google Scholar]
  • Butler G.L., 1977. Algae and pesticides. Residue Rev., 99, 19–62. [CrossRef] [Google Scholar]
  • Cook J.R., 1968. The cultivation and growth of Euglena. In: Buetow D.E. (ed.), The Biology of Euglena, Vol. II, Academic Press, New York, 243–314. [Google Scholar]
  • Dennington V.N., George J.J. and Wyborn C.H.E., 1975. The effects of oils on growth of freshwater plankton. Environ. Pollut., 8, 233–237. [CrossRef] [Google Scholar]
  • Dmowski K., Kozakiewicz A. and Kozakiewicz M., 1998. Small mammal population and community under conditions of extremely high thallium contamination in the environment. Ecotoxicol. Environ. Safety, 41, 2–7. [CrossRef] [Google Scholar]
  • Fasulo M.P., Bassi M. and Donini A., 1983. Cytotoxic effects of hexavalent chromium in Euglena gracilis. II. Physiological and ultrastructural studies. Protoplasma, 114, 143–153. [Google Scholar]
  • Fleischer M. 1997. Thallium. Anal. Hazard. Subst. Biol. Mater., 5, 163–179. [Google Scholar]
  • Havas M. and Hutchinson T.C., 1983. The Smoking Hills: natural acidification of an aquatic ecosystem. Nature, 301, 23–27. [CrossRef] [Google Scholar]
  • Hindák F., Wołowski K. and Hindakowa A., 2000. Cysts and their formation in some neustonic Euglena species. Ann. Limnol. – Int. J. Lim., 36, 83–93. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jones D.T., 1944. Two protozoans from Great Salt Lake. Bull. Univ. Utah Biol. Ser., 8, 3–10. [Google Scholar]
  • Kabata-Pendias A. and Mukherjee A.B., 2007. Trace Elements from Soil to Human, Springer-Verlag, Berlin, Heidelberg, 345–350. [Google Scholar]
  • Lackey J.B., 1968. Ecology of Euglena. In: Buetow D.E. (ed.), The Biology of Euglena, Vol. I: Academic Press, New York, 28–44. [Google Scholar]
  • Lane A.E. and Burris J.E., 1981. Effects of environmental pH on the internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis. Plant Physiol., 68, 439–442. [CrossRef] [PubMed] [Google Scholar]
  • Leblanc M., Petit D., Deram A., Robinson B.H. and Brooks R.R., 1999. The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ. Geol., 94, 109–114. [CrossRef] [Google Scholar]
  • Léonard A. and Gerber G.B., 1997. Mutagenicity, carcinogenicity and teratogenicity of thallium compounds. Mutat. Res., 387, 47–53. [CrossRef] [PubMed] [Google Scholar]
  • Lustigman B., Lee L.H., Morata J. and Khan F., 2000. Effect of thallium on the growth of Anacystis nidulans and Chlamydomonas reinhardtii. Bull. Environ. Contam. Toxicol., 64, 565–573. [CrossRef] [PubMed] [Google Scholar]
  • Pawlitz H. and Werner D., 1978. Differential elimination of phenol by diatoms and other unicellular algae from lower concentrations. Bull. Environ. Contam. Toxicol., 20, 303–312. [CrossRef] [PubMed] [Google Scholar]
  • Peter A.L.J. and Viraraghavan T., 2005. Thallium: a review of public health and environmental concerns. Environ. Int., 31, 493–501. [CrossRef] [Google Scholar]
  • PN-EN ISO 9963-1:2001. Water Quality – Determination of Alkalinity – Part 1: Determination of Total and Composite Alkalinity, Polish Committee for Standardization, Warsaw, Poland. [Google Scholar]
  • PN-EN ISO 17294-1:2007. Water Quality – Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) – Part 1: General Guidelines. Polish Committee for Standardization, Warsaw, Poland. [Google Scholar]
  • PN-ISO 9297:1994. Water Quality – Determination of Chloride – Silver Nitrate Titration with Chromate Indicator (Mohr's Method), Polish Committee for Standardization, Warsaw, Poland. [Google Scholar]
  • Podda F., Medas D., De Giudici G., Ryszka P., Wołowski K. and Turnau K., 2013. Zn biomineralization processes and microbial biofilm in a metal-rich stream (Naracauli, Sardinia). Environ. Sci. Pollut. Res., 21, 6793–6808. [CrossRef] [Google Scholar]
  • Poorman A.R., 1973. Effects of pesticides on Euglena gracilis. I. Growth studies. Bull. Environ. Contam. Toxicol., 10, 25–28. [CrossRef] [Google Scholar]
  • Program of the Environmental Protection for the Tarnowskie Góry community for the years 2012–2015 with the prospect for 2016–2019, Accessed online 20 January 2015, (in Polish). [Google Scholar]
  • Ralph L. and Twiss M.R., 2002. Comparative toxicity of thallium (I), thallium (III), and cadmium (II) to the unicellular alga Chlorella isolated from Lake Erie. Bull. Environ. Contam. Toxicol., 68, 261–268. [PubMed] [Google Scholar]
  • Reczyńska-Dutka M., 1986. Transport of heavy metals in three differently polluted surface waters in Silesia (Southern Poland). Acta Hydrobiol., 28, 279–291. [Google Scholar]
  • Reynolds C.S., 1984. The Ecology of Freshwater Phytoplankton, Cambridge University Press, Cambridge, 178–180. [Google Scholar]
  • Rozporządzenie Ministra Środowiska z dn. 9 listopada 2011 r. w sprawie sposobu klasyfikacji stanu jednolitych wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych. Dziennik Ustaw nr 257, poz. 1545. [Google Scholar]
  • Say P.J. and Whitton B.A., 1980. Changes in flora down a stream showing a zinc gradient. Hydrobiologia, 76, 255–262. [CrossRef] [Google Scholar]
  • Sládeček V. and Sládečková A., 1996. Atlas of Aquatic Organisms with Respect to Water Supply, Surface Waters and Wastewater Treatment Plants, Česká vědeckotechnická vodohospodářská společnost v Agrospoji, Praha, 351 p. [Google Scholar]
  • Starmach K., 1983. Euglenophyta – Eugleniny, Flora Słodkowodna Polski. Polska Akademia Nauk, Instytut Botaniki, Vol. 3, Polskie Wydawnictwo Naukowe, Kraków, 563 p. [Google Scholar]
  • Tam D., Nakatsu C. and Hutchinson T.C., 1981. Multiple metal tolerances and co-tolerances in algae. In: Heavy Metals in the Environment International Conference, Amsterdam, 300–304. [Google Scholar]
  • Trzcińska M. and Pawlik-Skowrońska B., 2013. Differences in Zn and Pb resistance of two ecotypes of the microalga Eustigmatos sp. inhabiting metal loaded calamine mine spoils. J. Appl. Phycol., 25, 277–284. [CrossRef] [Google Scholar]
  • Turner A. and Furniss O., 2012. An evaluation of the toxicity and bioaccumulation of thallium in the coastal marine environment using the macroalga, Ulva lactuca. Mar. Pollut. Bull., 64, 2720–2724. [CrossRef] [PubMed] [Google Scholar]
  • United States Environemnatl Protection Agency (2013) Water Quality Standards, section 304(a) Criteria for Priority Toxic Pollutants, Accessed online 10 June 2013, [Google Scholar]
  • van der Ent A., Baker A.J.M., Reeves R.D., Pollard A.J. and Schat H., 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil, 362, 319–334. [CrossRef] [Google Scholar]
  • Walne P.L. and Kivic P.A., 1990. 15. Phylum Euglenida. In: Margulis L., Corliss J.O., Melkonian M. and Chapmann D.J. (eds.), Handbook of Protoctista, Jones and Bartlett, Boston, 270–287. [Google Scholar]
  • Whitton A., Gale N.L. and Wixson B.G., 1981. Chemistry and plant ecology of zinc-rich wastes dominated by blue green algae. Hydrobiologia, 83, 331–341. [CrossRef] [Google Scholar]
  • Wierzbicka M., Szarek-Łukaszewska G. and Grodzińska K., 2004. Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotox. Environ. Safety, 59, 84–88. [CrossRef] [Google Scholar]
  • Wołowski K., 1998. Taxonomic and environmental studies on Euglenophytes of the Kraków Częstochowa Upland (Southern Poland). Fragm. Flor. Geobot., Suppl., 6, 1–192. [Google Scholar]
  • Wołowski K., 2011. Phylum Euglenophyta (Euglenoids). In: John D.M., Whitton B.A. and Brook A.J. (eds.), The freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae, Second edn,, Cambridge University Press, Cambridge, 181–239. [Google Scholar]
  • Wołowski K. and Hindák F., 2005. Atlas of Euglenophytes, VEDA, Publishing House of the Slovak Academy of Science, Bratislava, 136 p. [Google Scholar]
  • Wołowski K., Turnau K. and Henriques F.S., 2008. The algal flora of an extremely acidic, metal-rich drainage pond of Săo Domingos pyrite mine (Portugal). Cryptogamie Algol., 29, 313–324. [Google Scholar]
  • Wołowski K., Piątek J. and Płachno B.J., 2011. Algae and stomatocysts associated with carnivorous plants. First report of chrysophyte stomatocysts from Virginia, USA. Phycologia, 50, 511–519. [CrossRef] [Google Scholar]
  • Wołowski K., Piątek J. and Płachno B.J., 2013a. Chrysophycean stomatocysts associated with the carnivorous plants (genus Utricularia) from Jeleniak-Mikuliny Nature Reserve. Oceanol. Hydrobiol. Stud., 44, 398–405. [Google Scholar]
  • Wołowski K., Uzarowicz Ł., Łukaszek M. and Pawlik-Skowrońska B., 2013b. Diversity of algal communities in acid mine drainages of different physico-chemical properties. Nova Hedwigia, 97, 117–137. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.