Free Access
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 2, 2015
Page(s) 125 - 138
Published online 27 March 2015
  • Adams D.C., Rohlf F.J. and Slice D.E., 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool., 71, 5–16. [CrossRef] [Google Scholar]
  • Adolfsson S., Michalakis Y., Paczesniak D., Bode S.N.S., Butlin R.K., Lamatsch D.K., Martins M.J.F., Schmit O., Vandekerkhove J. and Jokela J., 2010. Evaluation of elevated ploidy and asexual reproduction as alternative explanations for geographic parthenogenesis in Eucypris virens ostracods. Evolution, 64, 986–997. [CrossRef] [PubMed] [Google Scholar]
  • Aguilar-Alberola J. and Mesquita-Joanes F., 2014. Breaking the temperature–size rule, thermal effects on growth, development and fecundity of a crustacean from temporary waters. J. Therm. Biol., 42, 15–24. [CrossRef] [PubMed] [Google Scholar]
  • Alcorlo P., Baltanás Á. and Arqueros L., 1999. Intra-clonal shape variability in the non-marine ostracod Heterocypris barbara (Crustacea, Ostracoda). Geosound – Yerbilimleri, 35, 1–11. [Google Scholar]
  • Angilletta M.J., Steury T.D. and Sears M.W., 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comp. Biol., 44, 498–509. [CrossRef] [PubMed] [Google Scholar]
  • Ariztegui D., Anselmetti F.S., Gilli A. and Waldmann N., 2008. Late Pleistocene environmental change in Eastern Patagonia and Tierra del Fuego – a limnogeological approach. In: Rabassa J. (ed.), The Late Cenozoic of Patagonia and Tierra del Fuego, Elsevier, Amsterdam, 241–253. [CrossRef] [Google Scholar]
  • Atkinson D., 1994. Temperature and organism size, a biological law for ectotherms? Adv. Ecol. Res., 25, l–58. [Google Scholar]
  • Baltanás Á. and Danielopol D.L., 2011. Geometric morphometrics and its use in ostracod research: a short guide. Joannea Geol. Paläontol., 11, 235–272. [Google Scholar]
  • Baltanás Á. and Geiger W., 1998. Intraspecific morphological variability, morphometric of valve outlines. In: Martens K. (ed.), Sex and Parthenogenesis, Evolutionary Ecology of Reproductive Modes in Non–Marine Ostracoda (Crustacea), Backhuys Publishers, Leiden, 172–142. [Google Scholar]
  • Baltanás Á., Otero M., Arqueros L., Rossetti G. and Rossi V., 2000. Ontogenetic changes in the carapace shape of the non-marine ostracod Eucypris virens (Jurine). Hydrobiologia, 419, 65–72. [CrossRef] [Google Scholar]
  • Baltanás Á., Alcorlo P. and Danielopol D.L., 2002. Morphological disparity in populations with and without sexual reproduction, a case study in Eucypris virens (Crustacea, Ostracoda). Biol. J. Linn. Soc., 75, 9–19. [CrossRef] [Google Scholar]
  • Baltanás Á., Brauneis W., Danielopol D.L. and Linhart J., 2003. Morphometric methods for applied ostracodology, tools for outline analysis of nonmarine ostracods. In: Park L.E. and Smith A.J. (eds.), Bridging the Gap, Trends in the Ostracod Biological and Geological Sciences, The Paleontological Society Papers, New Haven, 101–118. [Google Scholar]
  • Barker D., 1963. Size in relation to salinity in fossil and recent euryhaline ostracods. J. Mar. Biol. Ass., 43, 785–795. [CrossRef] [Google Scholar]
  • Benson R.H., 1981. Form, function and architecture of ostracod shells. Annu. Rev. Earth Planet. Sci., 9, 59–80. [CrossRef] [Google Scholar]
  • Bergmann C., 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 3, 595–708. [Google Scholar]
  • Bookstein F.L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology, Cambridge University Press, Cambridge, 435 p. [Google Scholar]
  • Bookstein F.L., 1996a. Biometrics, biomathematics and the morphometric synthesis. Bull. Math. Biol., 58, 313–365. [CrossRef] [PubMed] [Google Scholar]
  • Bookstein F.L., 1996b. Combining the tools of geometric morphometrics. In: Marcus L.F., Corti M., Loy A., Naylor G.J.P. and Slice D.E. (eds.), Advances in Morphometrics, Nato ASI Series, Series A: Life Science, Plenum, New York, 131–152. [Google Scholar]
  • Bookstein F.L., 1997. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal., 1, 225–243. [Google Scholar]
  • Bookstein F.L., 1998. A hundred years of morphometrics. Acta Zool. Hung., 44, 7–59. [Google Scholar]
  • Boomer I., Horne D.J. and Slipper I.J., 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell? In: Park L.E. and Smith A.J. (eds.), Bridging the Gap, Trends in the Ostracod Biological and Geological Sciences, The Paleontological Society Papers, New Haven, 153–180. [Google Scholar]
  • Carbonel P., Colin J. and Danielopol D.L., 1988. Paleoecology of limnic ostracods, a review of some major topics. Palaeogeogr. Palaeoclimatol. Palaeoecol., 62, 413–461. [CrossRef] [Google Scholar]
  • Carbonel P., Mourguiart P. and Peypouquet J.P., 1990. The external mechanisms responsible for morphological variability in Recent Ostracoda, seasonality and biotope situation. An example from Lake Titicaca. In: Whatley R. and Maybury C. (eds.), Ostracoda and Global Events. British Micropalaeontological Society Publication Series, Chapman and Hall, London, 331–340. [CrossRef] [Google Scholar]
  • Cusminsky G.C. and Whatley R., 1996. Quaternary non-marine ostracods from lake beds in northern Patagonia. Rev. Esp. Paleontol., 11, 143–152. [Google Scholar]
  • Cusminsky G.C., Pérez P.A., Schwalb A. and Whatley R., 2005. Recent lacustrine ostracods from Patagonia, Argentina. Rev. Esp. Micropaletol., 37, 431–450. [Google Scholar]
  • Cusminsky G.C., Schwalb A., Pérez P.A., Pineda D., Viehberg F., Whatley R. and Anselmetti F.S., 2011. Late quaternary environmental changes in Patagonia as inferred from lacustrine fossil and extant ostracods. Biol. J. Linn. Soc., 103, 397–408. [CrossRef] [Google Scholar]
  • Daday E.V., 1902. Mikroskopische -susswasserthiere aus Patagonien. Természetrajzi Füzetek, 25, 201–313. [Google Scholar]
  • De Deckker P., 1981. On Eucypris fontana. Stereo-Atlas of Ostracods Shells, 8, 87–92. [Google Scholar]
  • Dryden I.L. and Mardia K.V., 1998. Statistical Shape Analysis, John Wiley and Sons, Chichester, 172 p. [Google Scholar]
  • Elewa A.M.T., 2003. Morphometric studies on three ostracod species of the genus Digmocythere Mandelstam from the Middle Eocene of Egypt. Palaeontol. Electon., 6, 1–11. [Google Scholar]
  • Fernandes Martins M.J.F., Vandekerkhove J., Mezquita F., Schmit O., Rueda J., Rossetti G. and Namiotko T., 2009. Dynamics of sexual and parthenogenetic populations of Eucypris virens (Crustacea: Ostracoda) in three temporary ponds. Hydrobiologia, 636, 219–232. [CrossRef] [Google Scholar]
  • Frenzel P. and Boomer I., 2005. The use of ostracods from marginal marine, brackish waters as bioindicators of modern and quaternary environmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol., 225, 68–92. [CrossRef] [Google Scholar]
  • Goodall C., 1991. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc., B, 53, 285–339. [Google Scholar]
  • Graf H., 1931. Süsswasser Ostracoden aus Sudgeorgian. Zool. Anz., 93, 185–191. [Google Scholar]
  • Green W.D.K., 1996. The thin-plate spline and images with curving features. In: Mardia K.V., Gill C.A. and Dryden I.L. (eds.), Proceedings in Image Fusion and Shape Variability Techniques, Leeds University Press, Leeds, 79–87. [Google Scholar]
  • Hammer O. and Harper D., 2006. Paleontological Data Analysis, Blackwell, Oxford, 351 p. [Google Scholar]
  • Hunt G. and Roy R., 2006. Climate change, body size evolution and Cope's Rule in deep-sea ostracods. Proc. Natl. Acad. Sci. USA, 103, 1347–1352. [CrossRef] [Google Scholar]
  • Kaesler R.L. and Foster D.W., 1988. Ontogeny of Bradleya normani (Brady), Shape analysis of landmarks. In: Hanai T. and Ikeya K. (eds.), Evolutionary Biology of Ostracoda, Elsevier Kodansha, Tokyo, 207–218. [Google Scholar]
  • Kaesler R.L. and Lohmann K.C., 1976. Phenotypic variation of populations of Krithe producta with environment. Abh. Verh. Naturwiss. Ver. Hamburg, (N/F), 18/19(Suppl.), 279–285. [Google Scholar]
  • Karanovic I., 2008. Three interesting Cyprididae (Ostracoda) from Western Australia. Rec. Aust. Mus., 24, 267–287. [Google Scholar]
  • Klingenberg C.P., 2011. MorphoJ, an integrated software package for geometric morphometrics. Mol. Ecol. Resour., 11, 353–357. [Google Scholar]
  • Majoran S., Agrenius S. and Kucera M., 2000. The effect of temperature on shell size and growth rate in Krithe praetexta praetexta (Sars). Hydrobiologia, 419, 141–148. [CrossRef] [Google Scholar]
  • Markgraf V., Bradbury J.P., Schwalb A., Burns S.J., Stern C., Ariztegui D. and Maidana N., 2003. Holocene palaeoclimates of southern Patagonia, limnological and environmental history of Lago Cardiel, Argentina. The Holocene, 13, 581–591. [CrossRef] [Google Scholar]
  • Martens K., 1985. Effects of temperature and salinity on postembryonic growth in Mytilocypris henricae (Chapman) (Crustacea, Ostracoda). J. Crustac. Biol., 5, 258–272. [CrossRef] [Google Scholar]
  • Martens K. and Behen F., 1994. A checklist of the recent non-marine ostracods (Crustacea, Ostracoda) from the inland waters of South America and adjacent islands. Trav. Sci. Mus. Natl. Hist. Nat. Luxemb., 22, 84. [Google Scholar]
  • Martens K. and Savatenalinton S., 2011. A subjective checklist of the recent, free-living non-marine Ostracoda (Crustacea). Zootaxa, 2855, 1–79. [Google Scholar]
  • Meisch C., 2000. Freshwater Ostracoda of Western and Central Europe, Spektrum Akademischer Verlag, Heidelberg, 522 p. [Google Scholar]
  • Mezquita F., Roca J.R. and Wansard G., 1999. Moulting, survival and calcification, the effects of temperature and water chemistry on an ostracod crustacean (Herpetocypris intermedia) under experimental conditions. Arch. Hydrobiol., 146, 219–238. [Google Scholar]
  • Mesquita–Joanes F., Smith A.J. and Viehberg F.A., 2012. The ecology of Ostracoda across levels of biological organisation from individual to ecosystem: a review of recent developments and future potential. In: Horne D.J., Holmes J.A., Rodgriguez–Lazaro J. and Viehberg F.A. (eds.), Ostracoda, as Proxies for Quaternary Climate Change, Developments in Quaternary Science, Elsevier, Oxford, 15–35. [CrossRef] [Google Scholar]
  • Paruelo J., Beltran A., Jobbágy E., Sala O. and Golluscio R., 1998. The climate of Patagonia, general patterns and controls on biotic. Ecol. Austral., 8, 85–101. [Google Scholar]
  • Ramón-Mercau J., Laprida C., Massaferro J., Rogora M., Tartari G. and Mainada N., 2012. Patagonian ostracods as indicators of climate related hydrological variables, implications for paleoenvironmental reconstructions in Southern South America. Hydrobiologia, 694, 235–251. [CrossRef] [Google Scholar]
  • Reyment R.A., 1993. Ornamental and shape variation in Hemicytherura fulva McKenzie, Reyment and Reyment (Ostracoda; Eocene, Australia). Rev. Esp. Paleontol., 8, 125–131. [Google Scholar]
  • Reyment R.A., 1997. Evolution of shape in Oligocene and Miocene Notocarinovalva (Ostracoda, Crustacea): a multivariate statistical study. B. Math. Biol., 59, 63–87. [Google Scholar]
  • Reyment R.A. and Bookstein F.L., 1993. Infraspecific variability in shape in Neobuntonia airella: an exposition of geometric morphometry. In: McKenzie K.G. and Jones P.J. (eds.), Ostracoda in the Earth and Life Sciences, Balkema, Rotterdam, 291–314. [Google Scholar]
  • Reyment R.A., Bookstein F., McKenzie K.G. and Majoran S., 1988. Ecophenotypic variation in Mutilus pumilus (Ostracoda) from Australia, studied by canonical variate analysis and tensor biometrics. J. Micropalaentol., 7, 11–20. [CrossRef] [Google Scholar]
  • Roberts J.H., Holmes J.A. and Swan A.R.H., 2002. Ecophenotypy in Limnocythere inopinata (Ostracoda) from the late Holocene of Kajemarum Oasis (north-eastern Nigeria). Palaeogeogr. Palaeoclimatol. Palaeoecol., 185, 41–52. [CrossRef] [Google Scholar]
  • Rohlf F.J., 1990. Morphometrics. Annu. Rev. Ecol. Syst., 21, 299–316. [CrossRef] [Google Scholar]
  • Rohlf F.J., 2001. TpsDig, digitize landmarks from image files, scanner, or video, version 2.17, Available online at: http// [Google Scholar]
  • Rohlf F.J., 2003. TpsRelw, relative warps analysis, version 1.54, Available online at: http// [Google Scholar]
  • Rohlf F.J., 2004. TpsUtil, tps file utility program, version 1.52, Available online at: http// [Google Scholar]
  • Rohlf F.J. and Archie J.W., 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera, Culicidae). Syst. Zool., 33, 302–317. [CrossRef] [Google Scholar]
  • Rohlf F.J. and Corti M., 2000. Use of two–block partial least–squares to study covariation in shape. Syst. Biol., 49, 740–753. [Google Scholar]
  • Rohlf F.J. and Slice D., 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool., 39, 40–59. [Google Scholar]
  • Scheihing R., Labarca P., Cardenas L. and Nespolo R.F., 2011. Viability selection on body size in a non-marine ostracod. Hydrobiologia, 671, 193–203. [CrossRef] [Google Scholar]
  • Schwalb A., Burns S.J., Cusminsky G.C., Kelts K. and Markgraf V., 2002. Assemblage diversity and isotopic signals of modern ostracods and host waters from Patagonia, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol., 187, 323–339. [CrossRef] [Google Scholar]
  • Slice D., Bookstein F.L., Marcus F.L. and Rohlf F.J., 1996. A glossary for geometric morphometrics. In: Marcus L.F., Corti M., Loy A., Naylor G.J.P. and Slice D.E. (eds.), Advances in Morphometrics, Plenum Press, New York, 531–551. [Google Scholar]
  • StatSoft Inc., 2010. STATISTICA (data analysis software system), version 10, Available online at: http// [Google Scholar]
  • Turpen J.B. and Angell W.A., 1971. Aspects of molting and calcification in the ostracod Heterocypris. Biol. Bull., 140, 331–338. [Google Scholar]
  • Van der Meeren T., Verschuren D., Ito E. and Martens K., 2010. Morphometric techniques allow environmental reconstructions from low-diversity continental ostracod assemblages. J. Paleolimn., 44, 903–911. [CrossRef] [Google Scholar]
  • Van Harten D., 1975. Size and environmental salinity in the euryhaline ostracod Cyprideis torosa (Jones, 1850), a biometrical study. Palaeogeogr. Palaeoclimatol. Palaeoecol., 17, 35–48. [CrossRef] [Google Scholar]
  • Van Morkhoven F.P.C.M., 1962. Post-Palaeozoic Ostracoda. Their Morphology, Taxonomy, and Economic Use, Elsevier, Amsterdam, 204 p. [Google Scholar]
  • Whatley R. and Cusminsky G.C., 1999. Lacustrine Ostracoda and late Quaternary palaeoenviroments from the lake Cari–Laufquen region, Río Negro province, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol., 151, 229–239. [CrossRef] [Google Scholar]
  • Whatley R. and Cusminsky G.C., 2000. Quaternary Lacustrine Ostracoda from northern Patagonia, a review. In: Gierlowski–Kordesch E.H. and Kelts K.R. (eds.), Late Basins through Space and Time, The American Association of Petroleum Geologists, Tulsa, 581–590. [Google Scholar]
  • Wrozyna C., Viehberg F., Cusminsky G.C. and Schwalb A., 2008. Soft parts dissection analysis and morphometric techniques on the genus Limnocythere from Chile and Argentina. In: IV Congreso Argentino de Limnología, San Carlos de Bariloche, Abstract p. 161. [Google Scholar]
  • Yin Y., Geiger W. and Martens K., 1999. Effects of genotype and environment on phenotypic variability in Limnocythere inopinata (Crustacea, Ostracoda). Hydrobiologia, 400, 85–114. [CrossRef] [Google Scholar]
  • Zar J.H., 2010. Biostatistical Analysis (5th edn,), Pearson Prentice–Hall, New Jersey, 944 p. [Google Scholar]
  • Zelditch M.L., Swiderski D.L., Sheets H.D. and Fink W.L., 2004. Geometric Morphometrics for Biologists: a Primer, Elsevier, New York, 416 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.