Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 1, 2015
Page(s) 49 - 58
DOI https://doi.org/10.1051/limn/2014032
Published online 21 January 2015
  • Adamczuk M., 2012. Spatial distribution of juvenile and adult stages of limnetic Cladocera in relation to selected environmental factors. J. Limnol., 71, 112–118. [CrossRef] [Google Scholar]
  • Adamczuk M. and Mieczan T., 2013. Spatial distribution of brood-bearing females of limnetic species of Cladocera. C. R. Biol., 336, 457–465. [CrossRef] [PubMed] [Google Scholar]
  • Adrian R., Wickham S.A. and Butler N.M., 2001. Trophic interactions between zooplankton and the microbial community in the contrasting food webs: the epilimnion and deep chlorophyll maximum of a mesotrophic lake. Aquat. Microb. Ecol., 24, 83–97. [CrossRef] [Google Scholar]
  • Alofs K.M., Jackson D.A. and Lester N.P., 2014. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers. Distrib., 20, 123–136. [CrossRef] [Google Scholar]
  • Appelberg M., 2000. Swedish standard methods for sampling freshwater fish with multi-mesh gillnets. Fiskeriverket Inf., 2000, 1. [Google Scholar]
  • Augustin H., Foissner W. and Adam H., 1984. An improved pyridinated silver carbonate method which need few specimens and yields permanent slides of impregnation ciliates (Protozoa, Ciliophora). Mikroskopie, 41, 134–137. [Google Scholar]
  • Beaver J.R. and Crisman T.L., 1982. The trophic response of ciliated protozoans in fresh-water lakes. Limnol. Oceanogr., 27, 246–253. [CrossRef] [Google Scholar]
  • Beveridge O.S., Humpries S. and Petchey O.L., 2010. The interacting effects of temperature and food chain length on trophic abundance and ecosystem function. J. Anim. Ecol., 79, 693–700. [CrossRef] [PubMed] [Google Scholar]
  • Billen G., Servais P. and Becquevort S., 1990. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom up or top-down control? Hydrobiologia, 207, 37–42. [CrossRef] [Google Scholar]
  • Bottrell H.H., Duncan A., Gliwicz Z.M., Grygierek E., Herzig A., Hillbricht – Ilkowska A., Kurasawa H., Larsson P. and Węgleńska T., 1976. Review of some problems in zooplankton production studies. Norw. J. Zool., 24, 419–456. [Google Scholar]
  • Brett M.T. and Goldman C.R., 1996. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. U.S.A., 93, 7723–7726. [Google Scholar]
  • Brett M.T. and Goldman C.R., 1997. Consumer versus resource control in freshwater pelagic food webs. Science, 275, 384–386. [CrossRef] [PubMed] [Google Scholar]
  • Burns C.W., 1968. The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr., 13, 675–678. [CrossRef] [Google Scholar]
  • Burns C.W. and Schallenberg M., 1996. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J. Plankton Res., 18, 683–714. [CrossRef] [Google Scholar]
  • Burns C.W. and Schallenberg M., 2001. Calanoid copepods versus cladocerans: consumer effects on protozoa in lakes of different trophic status. Limnol. Oceanogr., 46, 1558–1565. [CrossRef] [Google Scholar]
  • Carpenter S.R., Kitchell J.F. and Hodgson J.R., 1985. Cascading trophic interactions and lake productivity. Bioscience, 35, 634–639. [Google Scholar]
  • Carrias J.F., Serre J.P., Sime-Ngando T. and Amblard C., 2002. Distribution, size, and bacterial colonization of pico- and nano-detrital organic particles (DOP) in two lakes of different trophic status. Limnol. Oceanogr., 47, 1202–1209. [Google Scholar]
  • CEN document, 2005. Water quality – Sampling of fish with multi-mesh gillnets. EN 14757: 2005. [Google Scholar]
  • Culver D.A., Boucherle M.M., Bean D.J. and Fletcher W.J., 1985. Biomass of freshwater crustacean zooplankton from lenght–weight regression. Can. J. Fish. Aquat. Sci., 42, 1380–1390. [Google Scholar]
  • Dawidek J., Sobolewski S. and Turczyński M., 2004. Transformations of catchmet-areas of lakes converted into storage reservoirs in the Wieprz-Krzna Canal system. Limnol. Rev., 4, 67–74. [Google Scholar]
  • Dawidek J., Ferencz B. and Sobolewski W., 2013. Modelling of hydrogeochemical potential of three lake catchments in Polesie region (Eastern Poland). Hydrol. Process., 27, 1773–1780. [CrossRef] [Google Scholar]
  • de Eyto E. and Irvine K., 2001. The response of three chydorid species to temperature, pH and food. Hydrobiologia, 459, 165–172. [CrossRef] [Google Scholar]
  • Delaney M.P., 2003. Effects of temperature and turbulence on predator-prey interactions between a bacterotrophic flagellate and a marine bacterium. Microb. Ecol., 45, 218–225. [CrossRef] [PubMed] [Google Scholar]
  • Dell A.J., Pawar S. and Savage V.M., 2011. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A., 108, 10591–10596. [CrossRef] [Google Scholar]
  • Dumont H.J., Van de Velde I. and Dumont S., 1975. The dry weight estimate of biomass in selection of Cladocera, Copepoda and Rotifera from the plankton, periphiton and benthos of continental waters. Oecologia, 19, 75–97. [CrossRef] [PubMed] [Google Scholar]
  • Estlander S., Nurminen L., Olin M., Vinni M. and Horppila J., 2009. Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia, 620, 109–120. [CrossRef] [Google Scholar]
  • Finlay B.J., 1982. Procedures for the isolation, cultivation and identification of protozoa. Exp. Microb. Ecol., 1, 44–65. [Google Scholar]
  • Frey D.G., 1982. Contrasting strategies of gametogenesis in northern and southern populations of Cladocera. Ecology, 63, 223–241. [CrossRef] [Google Scholar]
  • Gilbert D., Amblard C., Bourdier G. and Francez A.J., 1998. The microbial loop at the surface of a peatland: structure, functioning and impact of nutrients inputs. Microb. Ecol., 35, 89–93. [CrossRef] [Google Scholar]
  • Gillooly J.F. and Dodson S.I., 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnol. Oceanogr., 45, 22–30. [CrossRef] [Google Scholar]
  • Golterman H.L., 1969. Methods for Chemical Analysis of Freshwaters, Blackwell Scientific Publications, Oxford, Edinburgh, 172 p. [Google Scholar]
  • Gons H.J., Berger-Wiersma T., Otten J.H. and Rijkeboer M., 1992. Coupling of phytoplanbkton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands). Hydrobiologia, 233, 51–59. [CrossRef] [Google Scholar]
  • Green J., 1966. Seasonal variation in egg producton by Cladocera. J. Anim. Ecol., 35, 77–104. [CrossRef] [Google Scholar]
  • Güde H., 1986. Loss processes influencing growth of planktonic bacterial populations in Lake Constance. J. Plankton Res., 8, 795–810. [CrossRef] [Google Scholar]
  • Horppila J., Liljendahl-Nurminen A. and Malinen T., 2004. Effect of clay turbidity and light on the predator-prey interactions between smelts and chaoborids. Can. J. Fish. Aquat. Sci., 61, 1862–1870. [CrossRef] [Google Scholar]
  • Houde S.E.L. and Roman M.R., 1987. Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser., 40, 69–77. [CrossRef] [Google Scholar]
  • Ikeda T., 1985. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar. Biol., 85, 1–11. [CrossRef] [Google Scholar]
  • Jack J.D. and Gilbert J.J., 1993. Susceptibilities of different-sized ciliates to direct suppression by small and large cladocerans. Freshwat. Biol., 29, 19–29. [CrossRef] [Google Scholar]
  • Jerome C.A., Montagnes D.J.S. and Taylor F.J.R., 1993. The effect of the quantitative protargol stain and Lugols and Buinos fixatives on cell size: A more accurate estimate ciliate species biomass. J. Eukaryot. Microbiol., 40, 254–259. [CrossRef] [Google Scholar]
  • Jürgens K., 1994. Impact of Daphnia on planktonic microbial food webs – a review. Mar. Microb. Food Webs, 8, 295–324. [Google Scholar]
  • Jürgens K. and Jeppesen E., 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypereutrophic lake. J. Plankton Res., 22, 1047–1070. [Google Scholar]
  • Jürgens K. and Stolpe G., 1995. Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwat. Biol., 33, 27–38. [CrossRef] [Google Scholar]
  • Kalinowska K., 2004. Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic status. Pol. J. Ecol., 52, 19–34. [Google Scholar]
  • Kepkay P.E., 1994. Particle aggregation and the biological reactivity of colloids. Mar. Ecol. Prog. Ser., 109, 293–304. [CrossRef] [Google Scholar]
  • Kiørboe T., Møhlenberg F. and Hamburger K., 1982. Ingestion rate and gut clearance on the planktonic copepod Centropages hamatus (Lilljeborg) in relation to food concentration and temperature. Ophelia, 21, 181–194. [CrossRef] [Google Scholar]
  • Langenheder S. and Jürgens K., 2001. Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol. Oceanogr., 46, 121–134. [CrossRef] [Google Scholar]
  • Lazzaro X., 1987. A review of planktivorous fishes: their evolution, feeding bahaviours, selectivities and impacts. Hydrobiologia, 146, 97–167. [CrossRef] [Google Scholar]
  • Lemarchand C., Jardillier L., Carrias J.F., Richardot M., Debroas D., Sime-Ngando T. and Amblard C., 2006. Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems. FEMS Microbiol. Ecol., 57, 442–451. [CrossRef] [PubMed] [Google Scholar]
  • Lepère C., Boucher D., Jardillier L., Domaizon I. and Debroas D., 2006. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Appl. Environ. Microbiol., 72, 2971–2981. [CrossRef] [PubMed] [Google Scholar]
  • Lepš J. and Šmilauer P., 2003. Multivariate Analysis of Ecological Data using CANOCO, University Press, Cambridge, 251 p. [Google Scholar]
  • Marzolf G.R., 1990. Reservoirs as environments for zooplankton. In: Thornton K.W., Kimmel B.L. and Payne F.E. (eds.), Reservoir Limnology: Ecological Perspectives, John Wiley and Sons, New York, 195–208. [Google Scholar]
  • Mieczan T., Adamczuk M. and Nawrot D., 2013. Effect of water chemistry on the planktonic communities and relationships among food web components across a freshwater ecotone. Arch. Biol. Sci., 64, 1491–1504. [CrossRef] [Google Scholar]
  • Moustaka-Gouni M. and Vardaka E., 2006. Plankton food web structure in a eutrophic polymictic lake with a history of toxic cyanobacterial blooms. Limnol. Oceanogr., 51, 715–727. [CrossRef] [Google Scholar]
  • Müller-Solger A., Brett M.T., Luecke C., Elser J.J. and Goldman C.R., 1997. The effect of planktivorous fish (golden shiners) on the ciliate community of a mesotrophic lake. J. Plankton Res., 19, 1815–1828. [CrossRef] [Google Scholar]
  • O'Connor M.J., Piehler M.F., Leech D.M., Anton A. and Bruno J.F., 2009. Warming and resource availability shift food web structure and metabolism. PloS Biol., 7, e1000178. [CrossRef] [PubMed] [Google Scholar]
  • Pace M.L. and Cole J.J., 1994. Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microb. Ecol., 28, 181–183. [Google Scholar]
  • Paffenhöffer G.A. and Van Sant K.B., 1985. The feeding response of marine planktonic copepods to quantity and quality of particles. Mar. Ecol. Prog. Ser., 27, 55–65. [CrossRef] [Google Scholar]
  • Petchey O.L., McPhearson P.T., Casey T.M. and Morin P.J., 1999. Environmental warming alters food-web structure and ecosystem function. Nature, 402, 69–72. [CrossRef] [Google Scholar]
  • Pimm S.L., Lawton J.H. and Cohen J.E., 1991. Food web patterns and their consequences. Nature, 350, 669–674. [CrossRef] [Google Scholar]
  • Porter K.G. and Feig Y.S., 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948. [Google Scholar]
  • Riemann B., 1985. Potential importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. Environ. Microb., 50, 187–193. [Google Scholar]
  • Riemann L., Steward G.F. and Azam F., 2000. Dynamics of bacterial community composition and activity in a mesocosm diatom bloom. Appl. Environ. Microb., 66, 578–587. [CrossRef] [Google Scholar]
  • Roff J.C., Turner J.T., Webber M.K. and Hopcroft R.R., 1995. Bacterivory by tropical copepod nauplii: extent and possible significance. Aquat. Microb. Ecol., 9, 165–175. [CrossRef] [Google Scholar]
  • Shiah F.K. and Ducklow H., 1994. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol. Oceanogr., 39, 1243–1250. [CrossRef] [Google Scholar]
  • Shimeta J., 1993. Diffusional encounter of submicrometer particles and small cells by suspension feeders. Limnol. Oceanogr., 38, 456–465. [CrossRef] [Google Scholar]
  • Simek K., Bobkova J., Macek M., Nemoda J. and Psener R., 1995. Ciliates grazing on picoplankton in a eutrophic reservoir during summer phytoplankton maximum – a study at the species and community level. Limnol. Oceanogr., 40, 1077–1090. [CrossRef] [Google Scholar]
  • Simon M., 1987. Biomass and production of small and large freeliving and attached bacteria in Lake Constance. Limnol. Oceanogr., 32, 591–607. [Google Scholar]
  • Smil V., 2000. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Env., 25, 53–88. [CrossRef] [Google Scholar]
  • Straile D., Johnk K.D. and Rossknecht H., 2003. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnol. Oceanogr., 48, 1432–1438. [CrossRef] [Google Scholar]
  • Ter Braak C.J.F. and Šmilauer P., 2002. CANOCO reference manual and CanoDraw forWindows user's guide: software for canonical community ordination (version 4.5), Microcomputer Power, Ithaca, NY, 500 p. [Google Scholar]
  • Thor P., Cervetto G., Besihtepe S., Ribera-Maycas E., Tang K.W. and Dam H.G., 2002. Influence of two different green algal diets on specific dynamic action and incorporation of carbon into biochemical fractions in the copepod Acartia tonsa. J. Plankton Res., 24, 293–300. [CrossRef] [Google Scholar]
  • Turner J.T. and Tester P.A., 1992. Zooplankton feeding ecology: bacterivory by metazoan microzooplankton. J. Exp. Mar. Biol. Ecol., 160, 149–167. [CrossRef] [Google Scholar]
  • Uye S.I. and Kasahara S., 1983. Grazing of various developmental stages of Pseudodiaptomus marinus (Copepoda: Calanoida) on naturally occurring particles. Bull. Plankton Soc. Jpn., 30, 147–158. [Google Scholar]
  • Wickham S.A., 1995a. Trophic relations between cyclopoid copepods and ciliated protists, complex interactions link the microbial and classic food webs. Limnol. Oceanogr., 40, 1173–1181. [CrossRef] [Google Scholar]
  • Wickham S.A., 1995b. Cyclops predation on ciliates: species-specific differences and functional responses. J. Plankton Res., 17, 1633–1646. [CrossRef] [Google Scholar]
  • Williamson C.E., 1986. The swimming and feeding behaviour of Mesocyclops. Hydrobiologia, 134, 11–19. [CrossRef] [Google Scholar]
  • Winder M. and Schindler D.E., 2004. Climate change uncouples trophic interactions in and aquatic system. Ecology, 85, 2100–2106. [CrossRef] [Google Scholar]
  • Wissel B., Boeing W.J. and Ramcharan C.W., 2003. Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes. Limnol. Oceanogr., 48, 1965–1976. [CrossRef] [Google Scholar]
  • Xin L., Beyrend-Dur D., Dur G. and Ban S., 2014. Effects of temperature on life-history traits of Eudiaptomus japonicus (Copepoda: Calanoida) from Lake Biwa (Japan). Limnology, 15, 85–97. [CrossRef] [Google Scholar]
  • Zöllner E.H., Santer B., Boersma M., Hoppe H.G. and Jürgens K., 2003. Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwat. Biol., 48, 2174–2193. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.