Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 1, 2015
Page(s) 37 - 47
DOI https://doi.org/10.1051/limn/2014030
Published online 15 January 2015
  • Aller R.C. and Aller J.Y., 1992. Meiofauna and solute transport in marine muds. Limnol. Oceanogr., 37, 1018–1033. [CrossRef] [Google Scholar]
  • Arndt S., Jørgensen B.B., LaRowe D.E., Middelburg J.J., Pancost R.D. and Regnier P., 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci. Rev., 123, 53–86. [CrossRef] [Google Scholar]
  • Arnold J.G., Srinivasan R., Muttiah R.S. and Williams J.R., 1998. Large area hydrologic modeling and assessment part I: model development. J. Am. Water Resour. Assoc., 34, 73–89. [CrossRef] [Google Scholar]
  • Arnold J.G., Srinivasan R., Muttiah R.S., Allen P.M. and Walker C., 1999. Continental scale simulation of the hydrologic balance. J. Am. Water Resour. Assoc., 35, 1037–1052. [CrossRef] [Google Scholar]
  • Berner R.A., 1980. Early Diagenesis: a Theoretical Approach, Princeton University Press, Princeton, NJ. [Google Scholar]
  • Billen G. and Lancelot C., 1988. Modelling benthic nitrogen cycling in temperate coastal ecosystems. In: Blackburn T.H. and Sørensen J. (eds.), Nitrogen Cycling in Coastal Marine Environments, John Wiley & Sons Ltd., London, 342–378. [Google Scholar]
  • Billen G., Dessery S., Lancelot C. and Meybeck M., 1989. Seasonal and inter-annual variations of nitrogen diagenesis in the sediments of a recently impounded basin. Biogeochemistry, 8, 73–100. [CrossRef] [Google Scholar]
  • Boudreau B.P., 1996. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. Comput. Geosci., 22, 479–496. [CrossRef] [Google Scholar]
  • Boudreau B.P., 1997. Diagenetic Models and their Implementation, Springer-Verlag, Berlin Heidelberg. [CrossRef] [Google Scholar]
  • Dedieu K., Rabouille C., Thouzeau G., Jean F., Chauvaud L., Clavier J., Mesnage V. and Ogier S., 2007. Benthic O2 distribution and dynamics in a Mediterranean lagoon (Thau, France): an in situ microelectrode study. Estuar. Coast. Shelf Sci., 72, 393–405. [CrossRef] [Google Scholar]
  • Even S., Billen G., Bacq N., Théry S., Ruelland D., Garnier J., Cugier P., Poulin M., Blanc S., Lamy F. and Paffoni C., 2007. New tools for modelling water quality of hydro-systems: an application in the Seine River basin in the frame of the Water Framework Directive. Sci. Total Environ., 375, 274–291. [CrossRef] [PubMed] [Google Scholar]
  • Flipo N., Even S., Poulin M., Tusseau-Vuillemin M.-H., Ameziane T. and Dauta A., 2004. Biogeochemical modelling at the river scale: plankton and periphyton dynamics – Grand Morin case study, France. Ecol. Model., 176, 333–347. [CrossRef] [Google Scholar]
  • Garban B., Ollivon D., Poulin M., Gaultier V. and Chesterikoff A., 1995. Exchanges at the sediment-water interface in the river Seine, downstream from Paris. Water Res., 29, 473–481. [CrossRef] [Google Scholar]
  • Garnier J. and Billen G., 1993. Ecological interactions in a shallow sand-pit lake (Créteil Lake, France). A modelling approach. Hydrobiologia, 275/276, 97–114. [CrossRef] [Google Scholar]
  • Garnier J., Mounier M., Laverman A. and Billen G., 2010. Potential denitrification and nitrous oxide production in the sediments of the Seine River Drainage Network (France). J. Environ. Qual., 39, 449–459. [CrossRef] [PubMed] [Google Scholar]
  • Gorissen D., Crombecq K., Couckuyt I., Dhaene T. and Demeester P., 2010. A surrogate modeling and adaptive sampling toolbox for computer based design. J. Mach. Learn. Res., 11, 2051–2055. [Google Scholar]
  • Gypens N., Lancelot C. and Soetaert K., 2008. Simple parameterisations for describing N and P diagenetic processes: application in the North Sea. Prog. Oceanogr., 76, 89–110. [CrossRef] [Google Scholar]
  • Lerman A., 1978. Chemical exchange across sediment-water interface. Ann. Rev. Earth Planet. Sci., 6, 281–303. [CrossRef] [Google Scholar]
  • Lorke A. and MacIntyre S., 2009. The Benthic Boundary Layer in Rivers, Lakes, and Reservoirs. In: Likens G.E. (ed.), Encyclopedia of Inland Waters, Elsevier/Academic Press, Oxford, UK, 505–514. [CrossRef] [Google Scholar]
  • Peyrard D., Delmotte S., Sauvage S., Namour P., Gerino M., Vervier P. and Sanchez-Perez J.M., 2011. Longitudinal transformation of nitrogen and carbon in the hyporheic zone of an N-rich stream: a combined modelling and field study. Phys. Chem. Earth, 36, 599–611. [CrossRef] [Google Scholar]
  • Rabouille C. and Gaillard J.-F., 1991. Towards the EDGE: early diagenetic global explanation. A model depicting the early diagenesis of organic matter, O2, NO3, Mn and PO4. Geochim. Cosmochim. Acta, 55, 2511–2525. [CrossRef] [Google Scholar]
  • Ruelland D., Billen G., Brunstein D. and Garnier J., 2007. SENEQUE: a multi-scaled GIS interface to the RIVERSTRAHLER model of the biogeochemical functioning of river systems. Sci. Total Environ., 375, 257–273. [CrossRef] [PubMed] [Google Scholar]
  • Runkel R.L., McKnight D.M. and Rajaram H., 2003. Modeling hyporheic zone processes. Adv. Water Resour., 26, 901–905. [CrossRef] [Google Scholar]
  • Sánchez-Pérez J.M., Vervier P., Garabétian F., Sauvage S., Loubet S., Rols J.L., Bariac T. and Weng P., 2003. Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements. Hydrol. Earth Syst. Sci. Discuss., 7, 97–107. [CrossRef] [Google Scholar]
  • Seitzinger S.P., Styles R.V., Boyer E.W., Alexander R.B., Billen G., Howarth R.W., Mayer B. and Van Breemen N., 2002. Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A. Biogeochemistry, 57/58, 199–237. [CrossRef] [Google Scholar]
  • Sheibley R.W., Jackman A.P., Duff J.H. and Triska F.J., 2003. Numerical modeling of coupled nitrification–denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN. Adv. Water Resour., 26, 977–987. [CrossRef] [Google Scholar]
  • Soetaert K., Herman P.M.J. and Middelburg J.J., 1996. A model of early diagenetic processes from the shelf to abyssal depths. Geochim. Cosmochim. Acta, 60, 1019–1040. [CrossRef] [Google Scholar]
  • Soetaert K., Middelburg J.J., Herman P.M.J. and Buis K., 2000. On the coupling of benthic and pelagic biogeochemical models. Earth-Sci. Rev., 51, 173–201. [CrossRef] [Google Scholar]
  • Testa J.M., Brady D.C., Di Toro D.M., Boynton W.R., Cornwell J.C. and Kemp W.M., 2013. Sediment flux modeling: simulating nitrogen, phosphorus, and silica cycles. Estuarine Coast. Shelf Sci., 131, 245–263. [CrossRef] [Google Scholar]
  • Thieu V., Billen G. and Garnier J., 2009. Nutrient transfer in three contrasting NW European watersheds: The Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model. Water Res., 43, 1740–1748. [CrossRef] [PubMed] [Google Scholar]
  • Thouvenot M., Billen G. and Garnier J., 2007. Modelling nutrient exchange at the sediment – water interface of River Systems. J. Hydrol., 341, 55–78. [CrossRef] [Google Scholar]
  • Thouvenot-Korppoo M., Billen G. and Garnier J., 2009. Modelling benthic denitrification processes over a whole drainage network. J. Hydrol., 379, 239–250. [CrossRef] [Google Scholar]
  • Vanderborght J.-P., Wollast R. and Billen G., 1977. Kinetic models of diagenesis in disturbed sediments. Part I: mass transfer properties and silica diagenesis. Limnol. Oceanogr., 22, 787–793. [CrossRef] [Google Scholar]
  • Viollier E., Rabouille C., Apitz S.E., Breuer E., Chaillou G., Dedieu K., Furukawa Y., Grenz C., Hall P., Janssen J., Morford J.L., Poggiale J.-C., Roberts S., Shimmield T., Taillefer M., Tengberg A., Wenzhöfer F. and Witte U., 2003. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey. J. Exp. Mar. Biol. Ecol., 285–286, 5–31. [CrossRef] [Google Scholar]
  • Weng P., Sánchez-Pérez J.M., Sauvage S., Vervier P. and Giraud F., 2003. Assessment of the quantitative and qualitative buffer function of an alluvial wetland: hydrological modelling of a large floodplain (Garonne River, France). Hydrol. Process., 17, 2375–2392. [CrossRef] [Google Scholar]
  • Westrich J.T. and Berner R.A., 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the -model tested. Limnol. Oceanogr., 29, 236–249. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.