Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 1, 2015
Page(s) 59 - 70
DOI https://doi.org/10.1051/limn/2015006
Published online 13 March 2015
  • Agency for Toxic Substances and Disease Registry (ATSDR), 2005. Toxicological Profile for Nickel, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA. Available at http://www.atsdr.cdc.gov/toxprofiles [Google Scholar]
  • Ankers C., Walling D.E. and Smith R.P., 2003. The influence of catchment characteristics on suspended sediment properties. Hydrobiologia, 494, 159–167. [CrossRef] [Google Scholar]
  • Arnold J.G., Bircket M.D., Williams J.R., Smith W.F. and McGill H.N., 1987. Modeling the effects of urbanization on basin water yield and reservoir sedimentation. Water Resour. Bull., 23, 1101–1107. [CrossRef] [Google Scholar]
  • Arnold J.G., Srinivasan R., Muttiah R.S. and Williams J.R., 1998. Large area hydrologic modeling and assessment Part I: model development. J. Am. Water Resour. Assoc., 34, 73–89. [CrossRef] [Google Scholar]
  • Arnold J.G., Kiniry J.R., Srinivasan R., Williams J.R. and Neitsch S.l., 2011. Soil and Water Assessment Tool: Input/Output File Documentation Version 2009. USDA Agricultural Research Service and Texas A&M Blackland Research Center, Temple. Available at http://swatmodel.tamu.edu/documentation [Google Scholar]
  • Arroyo L., Heidinger H. and Araya E.J., 2010. Modelo Hidrológico SWAT como herramienta para procesos de toma de decisión. Documento Técnico N° 14. Área de Evaluación de Tierras. Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria, San José, Costa Rica. [Google Scholar]
  • ASCE, 1993. Criteria for evaluation of watershed models. J. Irrigation Drainage Eng., 119, 429–442. [CrossRef] [Google Scholar]
  • Benaman J. and Shoemaker C.A., 2005. An analysis of high-flow sediment event data for evaluating model performance. Hydrol. Process., 19, 605–620. [CrossRef] [Google Scholar]
  • Bizkaia Provincial Council (DFB). http:/www.bizkaia.net [Google Scholar]
  • Boskidis I., Gikas G.D., Sylaios G.K. and Tsihrintzis V.A., 2012. Hydrologic and water quality modeling of lower Nestos river basin. Water Resour. Manag., 26, 3023–3051. [CrossRef] [Google Scholar]
  • Cánovas C.R., Olías M., Nieto J.M., Sarmient A.M. and Cerón J.C., 2007. Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents. Sci. Total Environ., 373, 363–382. [CrossRef] [PubMed] [Google Scholar]
  • FAO. Available at http://www.fao.org/docrep/t2351 s/T2351S04.htm [Google Scholar]
  • Galván L., Olías M., Fernández de Villarán R., Domingo-Santos J.M., Nieto J.M., Sarmiento A.M. and Cánovas C.R., 2009. Application of the SWAT model to an AMD-affected river (Meca River, SW Spain). Estimation of transported pollutant load. J. Hydrol., 1377, 45–454. [Google Scholar]
  • GeoEuskadi, 2012. Territorial information system of the Basque Government. http://www.geo.euskadi.net/s69–15375/es [Google Scholar]
  • IRENAT, 2002. Empleo del Modelo SWAT para Generar Alternativas de Manejo en la. [Google Scholar]
  • Krause P., Boyle D.P., Base F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci., 5, 89–97. [CrossRef] [Google Scholar]
  • Legates D.R., McCabe G.J., 1999. Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35, 233–241. [CrossRef] [Google Scholar]
  • Mendiguchía C., Moreno C., García-Vargas M., 2007. Evaluation of natural and anthropogenic influences on Guadalquivir River (Spain) by dissolved heavy metals and nutrients. Chemosphere, 69, 1509–1517. [CrossRef] [PubMed] [Google Scholar]
  • Montoya-Armenta L.H., 2013. Efectos de las avenidas en el transporte de material particulado y contaminantes asociados: aplicación al caso del río Oka (Urdaibai), País Vasco. Doctoral Thesis. Department of Chemical and Environmental Engineering, University of the Basque Country, Bilbao. [Google Scholar]
  • Moriasi D.N., Arnold J.G., Van Liew M.W., Binger R.L., Harmel R.D. and Veith T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885–900. [CrossRef] [Google Scholar]
  • Nadal-Romero E., Regüés D. and Latron J., 2008. Relationships among rainfall, runoff and suspended sediment in a small catchment with badlands. Catena, 74, 127–136. [CrossRef] [Google Scholar]
  • Neitsch S.L., Arnold J.G., Kiniry J.R. and Williams J.R., 2011. Soil and Water Assessment Tool: Theoretical Documentation Version 2009. USDA Agricultural Research Service and Texas A&M Blackland Research Center, Temple. Available at http://swatmodel.tamu.edu/documentation/ [Google Scholar]
  • Oeurng C., Sauvage S. and Sánchez-Pérez J.M., 2011. Assessment of hydrology, sediment and particulate carbon yield in a large agricultural catchment using SWAT model. J. Hydrol., 401, 145–153. [CrossRef] [Google Scholar]
  • Olías M., Cánovas C.R., Nieto J.M. and Sarmiento A.M., 2006. Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain). Appl. Geochem., 21, 1733–1749. [CrossRef] [Google Scholar]
  • Parajuli P.B., Nelson N.O., Fress L.D. and Mankin K.R., 2009. Comparison of AnnAGNPS and SWAT model simulation results in USD-CEAP agricultural watersheds in south central Kansas. Hydrol. Process., 23, 748–763. [CrossRef] [Google Scholar]
  • Qiu L.J., Zheng F.L. and Yin R.S., 2012. SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: capabilities and challenges. Int. J. Sediment Res., 27, 226–234. [CrossRef] [Google Scholar]
  • Rodríguez-Blanco M.L., Taboada-Castro M.M. and Taboada-Castro M.T., 2010. Factors controlling hydro-sedimentary response during runoff events in a rural catchment in the humid Spanish zone. Catena, 82, 206–217. [CrossRef] [Google Scholar]
  • Rybicka E.H., Adamiec E. and Kwaterczak U., 2005. Distribution of trace metals in the Odra River system: Water-suspended matter-sediments. Limnologica, 35, 185–198. [CrossRef] [Google Scholar]
  • Sadeghi S.H.R., Mizuyama T., Miyata S., Gomi T., Kosugi K., Fukushima T., Mizugaki S. and Onda Y., 2008. Determinant factors of sediment graphs and rating loops in a reforested watershed. J. Hydrol., 356, 271–282. [CrossRef] [Google Scholar]
  • Santhi C.J., Arnold G., Williams J.R., Dugas W.A., Srinivasan R. and Hauck L.M., 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc., 37, 1169–1188. [CrossRef] [Google Scholar]
  • Spruill C.A., Workman S.R. and Taraba J.L., 2000. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Trans ASABE, 43, 1431–1439. [CrossRef] [Google Scholar]
  • Torres-Benites E., Fernández-Reynoso D., Oropeza-Mota J.L. and Mejía-Saenz E., 2003. Calibration of the hydrologic model SWAT in the watershed El Tejocote, Atlacomulco, Mexico. Terra Latinoamericana, 22, 437–444. [Google Scholar]
  • Uriarte A., 1998. Sediment dynamics on the inner continental shelf of the Basque Country (N. Spain). Doctoral Thesis. Department of Oceanography. Sciences Faculty. University of Southampton. [Google Scholar]
  • Walling D.A. and Webb B.W., 1996. Erosion and sediment yield: a global overview. IAHS Publ., 236, 3–19. [Google Scholar]
  • Williams G.P., 1989. Sediment concentration versus water discharge during single hydrologic events in rivers. J Hydrol., 111, 89–106. [CrossRef] [Google Scholar]
  • Willmot C.J., 1981. On the validation of models. Phys. Geogr., 2, 184–194. [Google Scholar]
  • Willmot, C.J., 1984. On the evaluation of model performance in physical geography. Spat. Stat. Models, 443–460. [CrossRef] [Google Scholar]
  • Winchell M., Srinivasan R., Di luzio M. and Arnold J., 2010. ArcSWAT Interface for SWAT 2009: User's Guide. Blackland Research Center, Texas Agricultural Experiment station and USD Agricultural Research Service. Available at http://swatmodel.tamu.edu/documentation/ [Google Scholar]
  • Xu Z.X., Pang J.P., Liu C.M. and Li J.Y., 2009. Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrol. Process., 23, 3619–3630. [CrossRef] [Google Scholar]
  • Zabaleta A., Martínez M., Uriarte J.A. and Antigüedad I., 2007. Factors controlling suspended sediment yield during runoff events in small headwater catchments of the Basque Country. Catena, 71, 179–190. [CrossRef] [Google Scholar]
  • Zabaleta A., Meaurio M., Ruiz-Romera E. and Antigüedad I., 2013. Simulation climate change impact on runoff and sediment yield in a small watershed in the Basque Country, northern Spain. J. Environ. Qual., 43, 235–245. DOI: 10.2134/jeq2012.0209. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.