Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 3, 2014
Page(s) 241 - 247
DOI https://doi.org/10.1051/limn/2014017
Published online 21 August 2014
  • Allan J.D., 1976. Life history patterns in zooplankton. Am. Nat., 110, 165–176. [CrossRef] [Google Scholar]
  • Belsare D.K., 1994. Inventory and status of vanishing wetland wildlife of Southeast Asia and an operational management plan for their conservation. In: Mitsch W.J. (ed.), Global Wetlands: Old World and New, Elsevier, Amsterdam, 841–856. [Google Scholar]
  • Blindow I., Hargeby A., Wagner B.M.A. and Andersson G., 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwat. Biol., 44, 185–197. [CrossRef] [Google Scholar]
  • Bodini A., Ricci A. and Viaroli P., 2000. A multimethodological approach for the sustainable management of perifluvial wetlands of the Po River (Italy). Environ. Manage., 26, 59–72. [CrossRef] [PubMed] [Google Scholar]
  • Bonecker C.C., Simoes N.R., Minte-Vera C.V., Lansac-Toha F.A., Machado Velho L.F. and Agostinho A.A., 2013. Temporal changes in zooplankton species diversity in response to environmental changes in an alluvial valley. Limnologica, 43, 114–121. [CrossRef] [Google Scholar]
  • Braioni M.G. and Gelmini D., 1983. Rotiferi Monogononti, Consiglio Nazionale delle Ricerche, Verona, 179 p. [Google Scholar]
  • Browne S., Crocoll S., Goetke D., Heaslip N., Kerpez T., Kogut K., Sanford S. and Spada D. 1995. New York State Freshwater Wetlands Delineation Manual, New York State, New York City, 54 p. [Google Scholar]
  • Burks R.L., Lodge D.M., Jeppesen E. and Lauridsen T.L., 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwat. Biol., 47, 343–365. [CrossRef] [Google Scholar]
  • Canfield D.E.J., Shireman J.V., Colle D.E., Haller W.T., Watkins C.E.I. and Maceina M.J., 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can. J. Fish. Aquat. Sci., 41, 497–501. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Chen G., Dalton C. and Taylor D., 2010. Cladocera as indicators of trophic state in Irish lakes. J. Paleolimnol., 44, 465–481. [CrossRef] [Google Scholar]
  • Crowder L.B. and Cooper W.E., 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology, 63, 1802–1813. [CrossRef] [Google Scholar]
  • Das M., Palita S.K. and Panda T., 2013. Role of sewage discharge on the diversity and distribution of zooplankton in the Mahanadi River, India. Asian J. Water Environ. Pollut., 10, 65–69. [Google Scholar]
  • Dussard B., 1967. Les Copepodes Des Aux Continentales:Cyclopoides et Biologie, Boubee & Cle, Parigi, 292 p. [Google Scholar]
  • Edmonson W.T. and Winberg G.G., 1971. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, Blackwell Scientific Publications, Oxford, 358 p. [Google Scholar]
  • Ferdous Z. and Muktadir A.K.M., 2009. A review: potentiality of zooplankton as bioindicator. Am. J. Appl. Sci., 6, 1815–1819. [CrossRef] [Google Scholar]
  • Geldreich E.E., 1966. Sanitary Significance of Fecal Coliform in the Environment, Federal Water Pollution Control Administration, Cincinnati, 122 p. [Google Scholar]
  • Gotceitas V. and Colgan P., 1987. Predator foraging success and habitat complexity: quantitative test of the threshold hypothesis. Oecologia, 80, 158–166. [Google Scholar]
  • Hurlbert S.H. and Mulla M.S., 1981. Impacts of mosquitofish (Gambusia affinis) predation on plankton communities. Hydrobiologia, 83, 125–151. [CrossRef] [Google Scholar]
  • Hurlbert S.H., Zedler J. and Fairbanks D., 1972. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science, 175, 639–641. [CrossRef] [PubMed] [Google Scholar]
  • Illyová M. and Pastuchová Z., 2012. The zooplankton communities of small water reservoirs with different trophic conditions in two catchments in western Slovakia. Limnologica, 42, 271–281. [CrossRef] [Google Scholar]
  • Irvine K., Moss B. and Balls H., 1989. The loss of submerged plants with eutrophication. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshwat. Biol., 22, 89–107. [CrossRef] [Google Scholar]
  • Jeppesen E., Jensen J.P., Kristensen P., Sondergaard M., Mortensen E., Sortkjaer O. and Olrik K., 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes: threshold levels, long-term stability and conclusions. Hydrobiologia, 200/201, 219–227. [CrossRef] [Google Scholar]
  • Jeppesen E., Noges P., Davidson T.A., Haberman J., Noges T., Blank K., Lauridsen T.L., Søndergaard M., Sayer C., Laugaste R., Johansson L.S., Bjerring R. and Amsinck S.L., 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 676, 279–297. [CrossRef] [Google Scholar]
  • Kattel G.R., 2012. Can we improve management practice of floodplain lakes using cladoceran zooplankton? River Res. Appl., 28, 1113–1120. [CrossRef] [Google Scholar]
  • Maier G., 1990. The seasonal dynamics of Thermocyclops dybowskii (Lande, 1890) in a small pond (Copepoda, Cyclopoida). Crustaceana, 59, 76–81. [CrossRef] [Google Scholar]
  • Margalef R., 1983. Limnologia, Ediciones Omega, Barcellona, 1010 p. [Google Scholar]
  • Margaritora F.G., 1985. Cladocera, Edizioni Calderini, Bologna, 399 p. [Google Scholar]
  • Matsumura-Tundisi T., Leitão S.N., Aghena L.S. and Miyahara J., 1990. Eutrofização da represa de Barra Bonita: estrutura e organização da comunidade de Rotifera. Rev. Bras. Biol., 50, 923–935. [Google Scholar]
  • Myers N., 1997. Environmental refugees. Popul. Environ., 19, 167–182. [CrossRef] [Google Scholar]
  • Pandey J. and Verma A., 2004. The influence of catchment on chemical and biological characteristics of two freshwater tropical lakes of Southern Rajasthan. J. Environ. Biol., 25, 81–87. [PubMed] [Google Scholar]
  • Pennak R.W., 1953. Freshwater Invertebrates of the United States, The Ronald Press Company, New York, 769 p. [Google Scholar]
  • Persson L., 1993. Predator-mediated competition in prey refuges: the importance of habitat dependent prey resources. Oikos, 68, 12–22. [CrossRef] [Google Scholar]
  • Ramsar, 1971. Convention on Wetlands of International Importance Especially as Waterfowl Habitat, Ramsar, Iran. [Google Scholar]
  • Ren Z., Zeng Y., Fu X., Zhanga G., Chena L., Chena J., Chonb T.S., Wangc Y. and Weic Y., 2013. Modeling macrozooplankton and water quality relationships after wetland construction in the Wenyuhe River Basin, China. Ecol. Model., 252, 97–105. [CrossRef] [Google Scholar]
  • Sahib S.S., 2004. Physico-chemical parameters and zooplankton of the Shendurni River, Kerala. J. Ecobiol., 16, 159–160. [Google Scholar]
  • Sampaio E.V., Rocha O., Matsumura-Tundisi T. and Tundisi J.G., 2002. Composition and abundance of zooplankton in the limnetic zone of seven reservoirs of the Paranapanema River, Brazil. Braz. J. Biol., 62, 525–545. [CrossRef] [PubMed] [Google Scholar]
  • Schmitz O.J., 2012. Restoration of Ailing Wetlands. PLoS Biol., 10, doi: 10.1371/journal.pbio.1001248. [CrossRef] [PubMed] [Google Scholar]
  • Sconfietti R. and Cantonati M., 1990. A zooplankton net for very shallow waters. Rivis. Idrobiol., 29, 669–674. [Google Scholar]
  • Sládeček V., 1983. Rotifers as indicators of water quality. Hydrobiologia, 100, 169–201. [CrossRef] [Google Scholar]
  • Sousa W., Attayde J., Rocha E. and Eskwazi- Santanna E., 2008. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid Northeastern Brazil. J. Plankton Res., 30, 699–708. [CrossRef] [Google Scholar]
  • Streble H. and Krauter D., 1984. Atlante Dei Microrganismi Acquatici, Franco Muzzio & C. Editore, Padova, 351 p. [Google Scholar]
  • Vad C.F., Horváth Z., Kiss K.T., Acs E., Török J.K. and Forró L., 2012. Seasonal dynamics and composition of cladoceran and copepod assemblages in ponds of a Hungarian cutaway peatland. Int. Rev. Hydrobiol., 97(5), 420–434. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.