Free Access
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 3, 2014
Page(s) 231 - 240
Published online 17 July 2014
  • Anagnostidis K. and Komárek J., 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch. Hydrobiol., 80, 327–472. [Google Scholar]
  • Berger C., Ba N., Gugger M., Bouvy M., Rusconi F., Couté A., Troussellier M. and Bernard C., 2006. Seasonal dynamics and toxicity of Cylindrospermopsis in Lake Guiers (Senegal, West Africa). FEMS Microbiol. Ecol., 57, 355–366. [CrossRef] [PubMed] [Google Scholar]
  • Bonilla S., Aubriot L., Soares M.C.S., Gonzales-Piana M., Fabre A., Huszar V.L.M., Lurning M., Antoniades D., Padisák J. and Kruk C., 2012. What drives the distribution of the bloom forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis Raciborskii? FEMS Microbiol. Lett., 79, 594–607. [CrossRef] [PubMed] [Google Scholar]
  • Briand J.-F., Leboulanger C., Humbert J.-F., Bernard C. and Dufour P., 2004. Cylindrospermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? J. Phycol., 40, 231–238. [CrossRef] [Google Scholar]
  • Bright D.I. and Walsby A.E., 2000. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zurich. New Phytol., 146, 301–316. [CrossRef] [Google Scholar]
  • Chorus I. and Bartram J., 1999. In Toxic Cyanobacteria in Water – A Guide to their Public Health Consequences, Monitoring and Management. E & FN Spon Press, London, 595 p. [Google Scholar]
  • Davis P.A. and Walsby A.E., 2002. Comparison of measured growth rates with those calculated from rates of photosynthesis in Planktothrix spp. isolated from Blelham Tarn, English Lake District. New Phytol., 156, 225–239. [CrossRef] [Google Scholar]
  • Eisentraeger A., Dott W., Klein J. and Hahn S., 2003. Comparative studies on algal toxicity testing using fluorometric microplate and Erlenmeyer flask growth-inhibition assays. Ecotox. Environ. Safe., 54, 346–354. [CrossRef] [Google Scholar]
  • Graneli E., Weberg M. and Salomon P., 2008. Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae, 8, 94–102. [CrossRef] [Google Scholar]
  • Gregor J., Jancula D. and Marsalek B., 2008. Growth assays with mixed cultures of cyanobacteria and algae assessed by in vivo fluorescence: one step closer to real ecosystems? Chemosphere, 70, 1873–1878. [CrossRef] [PubMed] [Google Scholar]
  • Guillard R.R.L., 1973. Division rates. In: Stein J.R. (ed.), Phycological Methods, Cambridge Press, New York, 289–311. [Google Scholar]
  • Heisler J., Glibert P., Burkholder J., Anderson D., Cochlan W., Dennison W., Gobler C., Dortch Q., Heil C., Humphries E., Lewitusn A., Magnien R., Marshall H., Sellner K., Stockwell D., Stoecker D. and Suddleson M., 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae, 8, 3–13. [CrossRef] [PubMed] [Google Scholar]
  • Jenhani, A., Fathalli, A. and Romdhane, M.S., 2012. Pytoplankton assemblages in Bir M'Cherga freshwater reservoir (Tunisia). Water Resource and Wetlands. In: Gâştescu P., Lewis Jr. W., Breţcan P. (eds.), Conf. Proceedings, Tulcea – Romania. [Google Scholar]
  • Keil C., Forchert A., Fastner J., Szewzyka U., Rotard W., Chorus I. and Kratke R., 2002. Toxicity and microcystin content of extracts from a Planktothrix bloom and two laboratory strains. Water Res., 36, 2133–2139. [CrossRef] [PubMed] [Google Scholar]
  • Kokocinski M., Dziga D., Spoof L., Stefaniak K., Jurczak T., Mankiewicz-Boczek J. and Meriluoto J., 2009. First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of Western Poland. Chemosphere, 74, 669–675. [CrossRef] [PubMed] [Google Scholar]
  • Kokocinski M., Stefaniak K., Mankiewicz-Boczek J., Izydorczyk K. and Soininen J., 2010. The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). Eur. J. Phycol., 45, 365–374. [CrossRef] [Google Scholar]
  • Komárek J. and Anagnostidis K., 2005. Süsswasserflora von Miteleuropa, Bd 19/2: Cyanoprokaryota. 2. Teil: Oscillatoriales, Elsevier GmbH, Heifelberg, 759 p. [Google Scholar]
  • Kotai J., 1972. Instructions for Preparation of Modified Nutrient Solution Z8 for Algae, Norwegian Institute for Water Research, Oslo, 1–5. [Google Scholar]
  • Li Y. and Li D., 2012. Competition between toxic Microcystis aeruginosa and nontoxic Microcystis Wesenbergii with Anabaena PCC7120. J. Appl. Phycol., 24, 69–78. [CrossRef] [Google Scholar]
  • Løvstad Ø., 1984. Growth limiting factors for Oscillatoria agardhii and diatoms in eutrophic lakes. OIKOS, 42, 2–12. [Google Scholar]
  • McGregor G.B. and Fabbro L.D., 2000. Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: implications for monitoring and management. Lakes Reservoirs: Res. Manage., 5, 195–205. [CrossRef] [Google Scholar]
  • Moisander P.H., Paerl H.W. and Zehr J.P., 2008. Effects of inorganic nitrogen on taxa-specific cyanobacterial growth and nifH expression in a subtropical estuary. J. Limnol. Oceanogr., 53, 2519–2522. [CrossRef] [Google Scholar]
  • Mur L.R. and Beydorff R.O., 1978. A model of the succession from green to blue-green algae based on light limitation. Ver. Int. Verein. Limnol., 20, 2314–2321. [Google Scholar]
  • Nicklisch A., 1994. Does mortality by nitrogen deficiency influence the succession of Limnothrix redekei and Planktothrix agardhii. Ver. Int. Verein. Limnol., 25, 2214–2217. [Google Scholar]
  • Oberhaus L., Briand J.-F., Leboulanger C., Jacquet S. and Humbert J.F., 2007. Comparative effects of the quality and quantity of light and temperature on the growth of Planktothrix agardhii and P. rubescens. J. Phycol., 43, 1191–1199. [CrossRef] [Google Scholar]
  • O'Neil J.M., Davis T.W., Burford M.A. and Gobler C.J., 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334. [CrossRef] [Google Scholar]
  • Padisák J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol., 107, 563–593. [Google Scholar]
  • Paerl H.W. and Huisman J., 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep., 1, 27–37. [CrossRef] [PubMed] [Google Scholar]
  • Pavlic Z., Stjepanovic B., Horvatic J., Persic V., Puntaric D. and Culig J., 2006. Comparative sensitivity of green algae to herbicides using Erlenmeyer flasks and microplate growth-inhibition assays. Bull. Environ. Contam. Toxicol., 76, 883–890. [CrossRef] [PubMed] [Google Scholar]
  • Posselt A.J., Burford M.A. and Shaw G., 2009. Pulses of phosphate promote dominance of the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. J. Phycol., 45, 540–546. [CrossRef] [PubMed] [Google Scholar]
  • Reynolds C.S., Huszar V., Kruk C., Naselli-Flores L. and Melo S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton. Res., 24, 417–428. [CrossRef] [Google Scholar]
  • Rice E.L., 1984. Allelopathy (2nd edn,), Academic Press, Orlando, FL. [Google Scholar]
  • Rippka R., 1988. Isolation and purification of cyanobacteria. Method Enzymol., 167, 3–27. [CrossRef] [Google Scholar]
  • Roth J., Haycock K., Gagno J., Soper C. and Caldarola J., 1995. L'intégré des analyses de données. Statview Software, Abacus Concepts, California. [Google Scholar]
  • Saker M.L. and Neilan B.A., 2001. Varied diazotrophies, morphologies and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from Northern Australia. Appl. Environ. Microbiol., 67, 1839–1845. [CrossRef] [PubMed] [Google Scholar]
  • Satoh A., Vudikaria L.Q., Kurano N. and Miyachi S., 2005. Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Pb, and Cd. Environ. Int., 31, 713–722. [CrossRef] [PubMed] [Google Scholar]
  • Seenayya G. and Subba Raju N., 1972. On the ecology and systematic of the alga known as Anabaenopsis raciborskii (Wolosz.) Elenk. and a critical evaluation of the forms described under the genus Anabaenopsis. In: Desikachary T.V. (ed.), First International Symposium on Taxonomy and Biology of blue-green algae, Madras. [Google Scholar]
  • Shafik H.M., Herodek S., Presing M. and Voros L., 2001. Factors effecting growth and cell composition of cyanoprokaryote Cylindrospermospis raciborskii (Woloszynska). Algol. Stud., 103, 75–93. [Google Scholar]
  • Sinha R., Leanne A.P., Timothy W.D., Burford M.A., Philip T.O. and Neilan B.A., 2012. Increased incidence of Cylindrospermopsis raciborskii in temperate zones – is climate change responsible? Water Res., 46, 1408–1419. [CrossRef] [PubMed] [Google Scholar]
  • Skjelbred B., Edvardsen B. and Andersen T., 2012. A high-throughput method for measuring growth and loss rates in microalgal cultures. J. Appl. Phycol., 24, 1589–1599. [CrossRef] [Google Scholar]
  • Stefaniak K. and Kokocinski M., 2005. Occurrence of invasive cyanobacteria species in polimictic lakes of the Wielkopolska region (Western Poland). Oceanol. Hydrobiol. St., 34, 137–148. [Google Scholar]
  • Sukenik A., Hadas O., Kaplan A. and Quesada A., 2012. Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes – physiological, regional and global driving forces. Front. Microbiol., 3, 86. [CrossRef] [PubMed] [Google Scholar]
  • Sun J. and Liu D., 2003. Geometric models for calculating cell biovolume and area for phytoplankton. J. Plankton. Res., 25, 1331–1346. [CrossRef] [Google Scholar]
  • Utermöhl H., 1958. Zur Vervolkommung des quantitativen Phytoplankton, Mrathod. Mitt. Int. Verein. Limnol., 9, l–38. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.