Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 2, 2014
Page(s) 155 - 162
DOI https://doi.org/10.1051/limn/2014008
Published online 04 April 2014
  • Aiken S.G., Newroth P.R. and While I., 1979. The biology of Canadian weeds. 34. Myriophyllum spicatum L. Can. J. Plant Sci., 59, 201–215. [CrossRef] [Google Scholar]
  • Barnes M.A., Jerde C.L., Keller D., Chadderton W.L., Howeth J.G. and Lodge D.M., 2013. Viability of aquatic plant fragments following desiccation. Invasive Plant Sci. Manage., 6, 320–325. [CrossRef] [Google Scholar]
  • Barrat-Segretain M.H., 1996. Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetatio, 123, 13–37. [CrossRef] [Google Scholar]
  • Barrat-Segretain M.H. and Bornette G., 2000. Regeneration and colonization abilities of aquatic plant fragments: effect of disturbance seasonality. Hydrobiologia, 421, 31–39. [CrossRef] [Google Scholar]
  • Barrat-Segretain M.H. and Cellot B., 2007. Response of invasive macrophyte species to drawdown: the case of Elodea sp. Aquat. Bot., 87, 255–261. [CrossRef] [Google Scholar]
  • Barrat-Segretain M.H., Bornette G. and Hering-Vilas-Boas A., 1998. Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats. Aquat. Bot., 60, 201–211. [CrossRef] [Google Scholar]
  • Bowes G., 2011. Single-cell C4 photosynthesis in aquatic plants. In: Rhagavendra A.S. and Sage R.F. (eds.), Advances in Photosynthesis, vol. 32: C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Springer, Dordrecht, 63–80. [Google Scholar]
  • Carignan R. and Kalff J., 1980. Phosphorus sources for aquatic weeds: water or sediments? Science, 207, 987–988. [CrossRef] [PubMed] [Google Scholar]
  • Chambers P.A., Prepas E.E., Bothwell M.L. and Hamilton H.R., 1989. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters. Can. J. Fish. Aquat. Sci., 46, 435–439. [CrossRef] [Google Scholar]
  • Cook C.D.K., 1985. Range extensions of aquatic vascular plant species. J. Aquat. Plant Manage., 23, 1–6. [Google Scholar]
  • Cook C.D.K. and Urmi-König, K., 1985. A revision of the genus Elodea (Hydrocharitaceae). Aquat. Bot., 21, 111–156. [CrossRef] [Google Scholar]
  • Eugelink A.H., 1998. Phosphorus uptake and active growth of Elodea canadensis Michx. and Elodea nuttallii (Planch.) St. John. Water Sci. Technol., 37, 59–65. [CrossRef] [Google Scholar]
  • Eusebio Malheiro A.C., Jahns P. and Hussner A., 2013. CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquat. Bot., 110, 31–37. [CrossRef] [Google Scholar]
  • Fritschler N., 2008. Regenerationsfähigkeit von indigenen und neophytischen Wasserpflanzen. Diploma-thesis, Heinrich-Heine-University Düsseldorf, 72 p. [Google Scholar]
  • Hilt S., Gross E.M., Hupfer M., Morscheid H., Mählmann J., Melzer A., Poltz J., Sandrock S., Scharf E.M., Schneider S. and Van de Weyer K., 2006. Restoration of submerged vegetation in shallow eutrophic lakes – guideline and state of the art in Germany. Limnologica, 36, 155–171. [CrossRef] [Google Scholar]
  • Hussner A., 2008. Ökologische und ökophysiologische Charakteristika aquatischer Neophyten in Nordrhein-Westfalen. PhD thesis, Heinrich-Heine-University, Düsseldorf, 192 p. [Google Scholar]
  • Hussner A., 2009. Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Res., 49, 506–515. [CrossRef] [Google Scholar]
  • Hussner A. and Lösch R., 2005. Alien aquatic plants in a thermally abnormal river and their assembly to neophyte-dominated macrophyte stands (River Erft, Northrhine-Westphalia). Limnologica, 35, 18–30. [CrossRef] [Google Scholar]
  • Langeland K.A. and Sutton D.L., 1980. Regrowth of Hydrilla from axillary buds. J. Aquat. Plant Manage., 18, 27–29. [Google Scholar]
  • Madsen J.D. and Smith D.H., 1989. Vegetative spread of Eurasian Watermilfoil colonies. J. Aquat. Plant Manage., 35, 63–68. [Google Scholar]
  • Orchard A.E., 1979. Myriophyllum (Haloragaceae) in Australasia. 1. New Zealand: a revision of the genus and a synopsis of the family. Brunonia, 2, 247–287. [CrossRef] [Google Scholar]
  • Riis T., Madsen T.V. and Sennels R.S.H., 2009. Regeneration, colonisation and growth rates of allofragments in four common stream plants. Aquat. Bot., 90, 209–212. [CrossRef] [Google Scholar]
  • Sand-Jensen K., 1989. Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquat. Bot., 34, 5–25. [CrossRef] [Google Scholar]
  • Santamaria L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol., 23, 137–154. [CrossRef] [Google Scholar]
  • Sculthorpe C.D., 1967. The Biology of Aquatic Vascular Plants, Edward Arnold Ltd, London, 610 p. [Google Scholar]
  • Smart R.M. and Barko J.W., 1985. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquat. Bot., 21, 251–263. [CrossRef] [Google Scholar]
  • Vari A., 2013. Colonization by fragments in six common aquatic macrophyte species. Fund. Appl. Limnol., 183, 15–26. [CrossRef] [Google Scholar]
  • Wells R.D.S., De Winton, M.D. and Clayton, J.S., 1997. Successive macrophyte invasions within the submerged flora of Lake Tarawera, Central North Island, New Zealand. N. Z. J. Mar. Freshwater Res., 31, 449–459. [CrossRef] [Google Scholar]
  • Wiegleb G. and Brux H., 1991. Comparison of life history characters of broad-leaved species of the genus Potamogeton L. 1. General characterization of morphology and reproductive strategies. Aquat. Bot., 39, 131–146. [CrossRef] [Google Scholar]
  • Xie D. and Yu D., 2011. Size-related auto-fragment production and carbohydrate storage in auto-fragment of Myriophyllum spicatum L. in response to sediment nutrient and plant density. Hydrobiologia, 658, 221–231. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.