Editor's Choice
Free Access
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 2, 2014
Page(s) 163 - 171
DOI https://doi.org/10.1051/limn/2014009
Published online 04 April 2014
  • Agostinho A.A., Thomaz S.M., Gomes L.C. and Baltar S.L.M.A., 2007a. Influence of the macrophyte Eichhornia azurea on fish assemblage of the Upper Paraná River floodplain (Brazil). Aquat. Ecol., 41, 611–619. [Google Scholar]
  • Agostinho A.A., Marques E.E., Agostinho C.S., Almeida D.A., Oliveira R.J. and Rodrigues J.B.M., 2007b. Fish ladder of Lajeado Dam: migration on one way routes? Neotrop. Ichthyol., 5, 121–130. [Google Scholar]
  • Agostinho A.A., Pelicice F.M. and Gomes L.C., 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz. J. Biol., 68(4 Suppl.), 1119–1132. [Google Scholar]
  • Andersson B., 2001. Macrophyte development and habitat characteristics in Sweden's large lakes. Ambio, 30, 503–513. [PubMed] [Google Scholar]
  • Azza N., van den Koppel J., Denny P. and Kansiime F., 2007. Shoreline vegetation distribution in relation to wave exposure and bay characteristics in a tropical great lake, Lake Victoria. J. Trop. Ecol., 23, 353–360. [Google Scholar]
  • Bini L.M. and Thomaz, S.M., 2005. Prediction of Egeria najas and Egeria densa occurrence in a large subtropical reservoir (Itaipu Reservoir, Brasil – Paraguay). Aquat. Bot., 83, 227–238. [CrossRef] [Google Scholar]
  • Bini L.M., Thomaz S.M. and Carvalho P., 2010. Limnological effects of Egeria najas Planchon (Hydrocharitaceae) in the arms of Itaipu Reservoir (Brazil, Paraguay). Limnology, 11, 39–47. [CrossRef] [Google Scholar]
  • Boschilia S.M., Oliveira E.F. and Thomaz S.M., 2008. Do aquatic macrophytes co-occur randomly? An analysis of null models in a tropical floodplain. Oecologia, 156, 203–214. [CrossRef] [PubMed] [Google Scholar]
  • Boyd C.E., 1971. The limnological role of aquatic macrophytes and their relationship to reservoir management. In: Hall G.E. (ed.), Reservoir Fisheries and Limnology, Bethesda, Maryland. Am. Fish. Soc. Spec. Publ., 8, 153–166. [Google Scholar]
  • Carpenter S.R. and Lodge D.M., 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot., 26, 341–370. [Google Scholar]
  • Coops H., van Nes E.H., van Den Berg M.S. and Butijn G.D., 2002. Promoting low-canopy macrophytes to compromise conservation and recreational navigation in a shallow lake. Aquat. Ecol., 36, 483–492. [CrossRef] [Google Scholar]
  • Cronin G., Lewis W.M. Jr and Schiehser M.A., 2006. Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquat. Bot., 85, 37–43. [CrossRef] [Google Scholar]
  • Duarte C.M. and Kalff J., 1986. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnol. Oceanogr., 31, 1072–1080. [CrossRef] [Google Scholar]
  • Engelhardt K.A.M. and Ritchie M.E., 2002. The effect of aquatic plant species richness on wetland ecosystem functioning. Ecology, 83, 2911–2924. [CrossRef] [Google Scholar]
  • Fernandes R., Gomes L.C., Pelicice F.M. and Agostinho A.A., 2009. Temporal organization of fish assemblages in floodplain lagoons: the role of hydrological connectivity. Environ. Biol. Fish., 85, 99–108. [CrossRef] [Google Scholar]
  • Gotelli N.J. and Entsminger G.L., 2001. EcoSim: null models software for ecology, version 6.21 Acquired Intelligence, Kesey-Bear, http://homepages.together.net/gentsmin/ecosim.html. [Google Scholar]
  • Gotelli N.J. and McCabe D., 2002. Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology, 83, 2091–2096. [CrossRef] [Google Scholar]
  • Gualdoni C.M., Boccolini M.F., Oberto A.M., Príncipe R.E., Raffaini G.B. and Corigliano M.C., 2009. Potential habitats versus functional habitats in a lowland braided river (Córdoba, Argentina). Ann. Limnol. - Int. J. Lim., 45, 69–78. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lacoul P. and Freedman B., 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev., 14, 89–136. [Google Scholar]
  • Léonard R., Legendre P., Jean M. and Bouchard A., 2008. Using the landscape morphometric context to resolve spatial patterns of submerged macrophyte communities in a fluvial lake. Landsc. Ecol., 23, 91–105. [CrossRef] [Google Scholar]
  • Lolis S.F. and Thomaz S.M., 2011. Monitoramento da composição específica da comunidade de macrófitas aquáticas no reservatório Luis Eduardo Magalhães. Planta Daninha., 29, 247–258. [Google Scholar]
  • Madsen J., Chambers P., James W., Koch E. and Westlake D., 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71–84. [CrossRef] [Google Scholar]
  • Marcondes D.A.S., Mustafá A.L. and Tanaka R.H., 2003. Estudos para manejo integrado de plantas aquáticas no reservatório de Jupiá. In: Thomaz S.M. and Bini L.M. (eds.), Ecologia e manejo de macrófitas aquáticas, Eduem, Maringá, 299–317. [Google Scholar]
  • Mjelde M., Lombardo P., Berge, D. and Johansen S.W., 2012. Mass invasion of non-native Elodea canadensis Michx. in a large, clear-water, species-rich Norwegian lake – impact on macrophyte biodiversity. Ann. Limnol. - Int. J. Lim., 48, 225–240. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mukhopadhyay G. and Dewanji A., 2005. Presence of tropical hydrophytes in relation to limnological parameters - a study of two freshwater ponds in Kolkata, India. Ann. Limnol. - Int. J. Lim., 41, 281–289. [CrossRef] [EDP Sciences] [Google Scholar]
  • Murphy K.J., Dickinson G., Thomaz S.M., Bini L.M., Dick K., Greaves K., Kennedy M.P., Livingstone S., McFerran H., Milne J.M., Oldroyd J. and Wingfiel R.A., 2003. Aquatic plant communities and predictors of diversity in a sub-tropical river floodplain: the upper Rio Paraná. Brazil. Aquat. Bot., 77, 257–276. [CrossRef] [Google Scholar]
  • Neiff J.J., Neiff P.A.S.G., Patiño C.A.E. and Chiozzi B.I., 2000. Prediction of colonization by macrophytes in the Yaciretá reservoir of the Paraná river (Argentina and Paraguay). Rev. Bras. Biol., 60, 615–626. [CrossRef] [Google Scholar]
  • Nõges T., Luup H. and Feldmann T., 2010. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjarv) in Estonia. Aquat. Ecol., 44, 83–92. [CrossRef] [Google Scholar]
  • Pelicice F.M., Agostinho A.A. and Thomaz S.M., 2005. Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecol., 27, 9–16. [CrossRef] [Google Scholar]
  • Pierini S.A. and Thomaz S.M., 2009. Effects of limnological and morphometric factors upon Zmin, Zmax and width of Egeria spp stands in a tropical reservoir. Braz. Arch. Biol. Technol., 52, 387–396. [CrossRef] [Google Scholar]
  • Pott V.J. and Pott A. 2000. Plantas aquáticas do Pantanal, EMBRAPA, Corumbá, 353 p. [Google Scholar]
  • Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegard K.L., Richter B.D., Sparks R.E. and Stromberg J.C., 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience, 47, 769–784. [Google Scholar]
  • Rea T.E., Karapatakis D.J., Guy K.K., Pinder J.E. and Mackey H.E. Jr, 1998. The relative effects of water depth, fetch and other physical factors on the development of macrophytes in a small southeastern US pond. Aquat. Bot., 61, 289–299. [CrossRef] [Google Scholar]
  • Riis T. and Hawes I., 2003. Effects of wave exposure on vegetation abundance, richness and depth distribution of shallow water plants in a New Zealand lake. Freshw. Biol., 48, 75–87. [CrossRef] [Google Scholar]
  • Schutten J., Dainty J. and Davy A.J., 2004. Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes. Ann. Bot., 93, 333–341. [CrossRef] [PubMed] [Google Scholar]
  • Sculthorpe, C.D. 1967. The Biology of Aquatic Vascular Plants, Edward Arnold, London, 610 p. [Google Scholar]
  • Sousa W.T.Z., Thomaz S.M., Murphy K.J., Silveira M.J. and Mormul R.P., 2009. Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch. in a sub-tropical river floodplain: the Upper River Paraná, Brazil. Hydrobiologia, 632, 65–78. [CrossRef] [Google Scholar]
  • Statsoft, 2005. Statistica (Data Analysis Software System). Version 7.1, StatSoft Inc, Tulsa. [Google Scholar]
  • Stone L. and Roberts A., 1990. The checkerboard score and species distributions. Oecologia, 85, 74–79. [CrossRef] [PubMed] [Google Scholar]
  • Strand J.A. and Weisner S.E.B., 1996. Wave exposure related growth of epiphyton: implications for the distribution of submerged macrophytes in eutrophic lakes. Hydrobiologia, 325, 113–19. [CrossRef] [Google Scholar]
  • Straskraba M. and Tundisi J.G. 1999. Reservoir ecosystem functioning: theory and applications. In: Tundisi J.G. and Straskraba M. (eds.), Theoretical Reservoir Ecology and its Applications, International Institute of Ecology, São Carlos, pp. 565–597. [Google Scholar]
  • Thomaz S.M. and Cunha E.R., 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages composition and biodiversity. Acta Limnol. Bras., 22, 218–236. [Google Scholar]
  • Thomaz S.M., Souza D.C. and Bini L.M., 2003. Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry. Hydrobiologia, 505, 119–128. [CrossRef] [Google Scholar]
  • Tundisi J.G. and Matsumura-Tundisi T., 2003. Integration of research and management in optimizing multiples uses of reservoirs: the experience in South America and Brazilian case studies. Hydrobiologia, 500, 231–242. [CrossRef] [Google Scholar]
  • Tundisi J.G. and Matsumura-Tundisi T. 2008. Limnologia, Oficina de Textos, São Paulo, 632 p. [Google Scholar]
  • van Nes E.H., Scheffer M., van den Berg M. and Coops H., 2002. Aquatic macrophytes: restore, eradicate or is there a compromise. Aquat. Bot., 72, 387–403. [CrossRef] [Google Scholar]
  • Walker I., Miyai R. and Melo M.D.A., 1999. Observations on aquatic macrophytes dynamics in the reservoir of the Balbina Hydroelectric Powerplant, Amazonas State, Brazil. Acta Amazonica, 29, 243–265. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.