Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 1, 2014
Page(s) 1 - 8
DOI https://doi.org/10.1051/limn/2013065
Published online 18 November 2013
  • Anderson M.R. and Kalff J., 1988. Submerged aquatic macrophyte biomass in relation to sediment characteristics in ten temperate lakes. Freshwat. Biol., 19, 115–121. [CrossRef] [Google Scholar]
  • Asaeda T., Hung N.T., Manatunge J. and Fujino T., 2004. The effects of flowing water and organic matter on the spatial distribution of submersed macrophytes. J. Freshwat. Ecol., 19, 401–405. [CrossRef] [Google Scholar]
  • Barko J.W., Hardin D.G. and Matthews M.S., 1982. Growth and morphology of submersed macrophytes in relation to light and temperature. Can. J. Bot., 60, 877–887. [CrossRef] [Google Scholar]
  • Barrat-Segretain M.-H., 2001. Invasive species in the Rhone River floodplain (France): replacement of Elodea canadensis Michaux by E. nuttallii St. John in two former river channels. Arch. Hydrobiol., 152, 237–251. [Google Scholar]
  • Barrat-Segretain M.-H., 2004. Growth of Elodea canadensis and Elodea nuttallii in monocultures and mixture under different light and nutrient conditions. Arch. Hidrobiol., 161, 133–144. [CrossRef] [Google Scholar]
  • Bernez I., Daniel H., Haury J. and Ferreira M.T., 2004. Combined effects of environmental factors and regulation on macrophyte vegetation along three rivers in Western France. Riv. Res. Appl., 20, 43–59. [CrossRef] [Google Scholar]
  • Butcher R.W., 1933. Studies on the ecology of rivers. I. On the distribution of macrophytic vegetation in the rivers of Britain. J. Ecol., 21, 58–91. [CrossRef] [Google Scholar]
  • Chambers P.A. and Kalff J., 1985. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can. J. Fish. Aquat. Sci., 42, 701–709. [CrossRef] [Google Scholar]
  • Chambers P.A., Prepas E.E., Hamilton H.R. and Bothwell M.L., 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Appl., 1, 249–257. [CrossRef] [PubMed] [Google Scholar]
  • Duarte C.M. and Kalff J., 1986. Littoral slope as a predictor of maximum biomass of submerged macrophyte communities. Limnol. Oceanogr., 31, 1072–1080. [CrossRef] [Google Scholar]
  • Ellawala C., Asaeda T. and Kawamura K., 2011. Influence of flow turbulence on growth and indole acetic acid and H2O2 metabolism of three aquatic macrophyte species. Aquat. Ecol., 45, 417–426. [CrossRef] [Google Scholar]
  • Grace J.B. and Tilly L.J., 1976. Distribution and abundance of submerged macrophytes, including Myriophyllum spicatum L. (Angiospermae), in a reactor cooling reservoir. Arch. Hydrobiol., 77, 474–487. [Google Scholar]
  • Haag R.W. and Gorham P.R., 1977. Effects of thermal effluent on standing crop and net production of Elodea canadensis and other submerged macrophytes in Lake Wabamun, Alberta. J. Appl. Ecol., 14, 835–851. [CrossRef] [Google Scholar]
  • Hamabata E., 1997. Distribution, stand structure and yearly biomass fluctuation of Elodea nuttallii, an alien species in Lake Biwa - Studies of submerged macrophyte communities in Lake Biwa (3). Jpn. J. Limnol., 58, 173–190. [CrossRef] [Google Scholar]
  • Herault B., Bornet A. & Tremolieres M., 2008. Redundancy and niche differentiation among the European invasive Elodea species. Biol. Invasions, 10, 1099–1107. [CrossRef] [Google Scholar]
  • Hrivnák R., Oťaheľová H. and Jarolímek I., 2006. Diversity of aquatic macrophytes in relation to environmental factors in the Slatina River (Slovakia). Biologia, 61, 417–423. [CrossRef] [Google Scholar]
  • Janauer G.A., Schmidt-Mumm U. and Schmidt B., 2010. Aquatic macrophytes and water current velocity in the Danube River. Ecol. Eng., 36, 1138–1145. [CrossRef] [Google Scholar]
  • Király G., Mesterházy A. and Bakan B., 2007. Elodea nuttalii (Planch.) H. St. John, Myosotis laxa Lehm. and Pyrus austriaca Kern., new for Slovenia, as well as other floristic records. Hladnikia, 20, 11–15. [Google Scholar]
  • Kohler A. and Janauer G.A., 1995. Zur Metodik der Untersuchungen von aquatischen Makrophyten in Flussgewasseren. In: Landsberg H. and Klapper H. (eds.), Handbuch Angewandte Limnologie, Ecomed Verl., Landsberg, Lech, 1–22. [Google Scholar]
  • Kuhar U., Germ M. and Gaberščik A., 2010. Habitat characteristics of alien species Elodea canadensis in watercourses. Hydrobiologia, 656, 205–212. [CrossRef] [Google Scholar]
  • Kunii H., 1981. Characteristics of the winter growth of detached Elodea nuttallii (Planch.) St. John in Japan. Aquat. Bot., 11, 57–66. [CrossRef] [Google Scholar]
  • Kunii H., 1984. Seasonal growth and profile structure development of Elodea nuttallii (Planch.) St. John in pond Ojaga-Ike, Japan. Aquat. Bot., 18, 239–247. [CrossRef] [Google Scholar]
  • Madsen J.D., 1994. Invasions and declines of submersed macrophytes in Lake George and other Adirondack lakes. Lake Reserv. Manag., 10, 19–23. [CrossRef] [Google Scholar]
  • Madsen J.D., Chambers P.A., James W.F., Koch E.W. and Westlake D.F., 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71–84. [CrossRef] [Google Scholar]
  • McKee D., Hatton K., Eaton J.W., Atkinson D., Atherton A. and Harvey I., 2002. Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquat. Bot., 74, 71–83. [CrossRef] [Google Scholar]
  • Mueller M., Pander J. and Geist J., 2011. The effects of weirs on structural stream habitat and biological communities. J. Appl. Ecol., 48, 1450–1461. [CrossRef] [Google Scholar]
  • Olson E.R., Ventura S.J. and Zedler J.B., 2012. Merging geospatial and field data to predict the distribution and abundance of an exotic macrophyte in a large Wisconsin reservoir. Aquat. Bot., 96, 31–41. [CrossRef] [Google Scholar]
  • Ozimek T., Gulati R.D. and van Donk E., 1990. Can macrophytes be useful in biomanipulation of lakes. – the Lake Zwemlust Example. Hydrobiologia, 200/201, 399–407. [CrossRef] [Google Scholar]
  • Rooney N. and Kalff J., 2000. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquat. Bot., 68, 321–335. [CrossRef] [Google Scholar]
  • Santamaria L. and van Vierssen W., 1997. Photosynthetic temperature responses of fresh- and brackish-water macrophytes: a review. Aquat. Bot., 58, 135–150. [CrossRef] [Google Scholar]
  • Sculthorpe C.D., 1967. Biology of Aquatic Vascular Plants. Edward Arnold, London, 610 p. [Google Scholar]
  • Šraj-Kržič N., Germ M., Urbanc-Berčič O., Kuhar U., Janauer G.A. and Gaberščik A., 2007. The quality of the aquatic environment and macrophytes of karstic watercourses. Plant. Ecol., 192, 107–118. [CrossRef] [Google Scholar]
  • Svensson R. and Wigren-Svensson M., 1992. Effects of cooling water discharge on the vegetation in the Forsmark Biotest Basin, Sweden. Aquat. Bot., 42, 121–141. [CrossRef] [Google Scholar]
  • Taylor B.R. and Helwig J., 1995. Submergent macrophytes in a cooling pond in Alberta, Canada. Aquat. Bot., 51, 243–257. [CrossRef] [Google Scholar]
  • Trebitz A.S., Nichols S.A., Carpenter S.R. and Lathrop R.C., 1993. Patterns of vegetation change in Lake Wingra following a Myriophyllum spicatum decline. Aquat. Bot., 46, 325–340. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.