Free Access
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 1, 2014
Page(s) 9 - 18
Published online 10 January 2014
  • Ban S., Hideaki T., Tsukasa M. and Nishimura K., 2009. Effects of physical interference on life history shifts in Daphnia pulex. J. Exp. Biol., 212, 3174–3183. [Google Scholar]
  • Barata C. and Baird D.J., 1998. Phenotypic plasticity and constancy of life-history traits in laboratory clones of Daphnia magna Straus: effects of neonatal length. Funct. Ecol., 12, 442–452. [Google Scholar]
  • Bernardo J., 1996. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Amer. Zool., 36, 216–236. [Google Scholar]
  • Boersma M., 1995. The allocation of resources to reproduction in Daphnia galeata: against the odds? Ecology, 76, 1251–1261. [CrossRef] [Google Scholar]
  • Boersma M., 1997. Offspring size and parental fitness in Daphnia magna. Evol. Ecol., 11, 439–450. [Google Scholar]
  • Burns C.W., 1995. Effects of crowding and different food levels on growth and reproductive investment of Daphnia. Oecologia, 101, 234–244. [CrossRef] [PubMed] [Google Scholar]
  • Cleuvers M., 1995. Die Auswirkungen der negativen Interferenz auf die F1-Generation von Daphnia magna STRAUS. PhD Thesis, Rheinisch-Westfäalischen Technischen Hochschule Aachen, Germany. [Google Scholar]
  • Cleuvers M., Goser B. and Ratte H.T., 1997. Life-strategy shift by intraspecific interaction in Daphnia magna: change in reproduction from quantity to quality. Oecologia, 110, 337–345. [CrossRef] [PubMed] [Google Scholar]
  • Cooney J.D. and Gehrs C.V.V., 1980. The relationship between egg size and naupliar size in the calanoid copepod Diaptomus clavipes Schacht. Limnol. Oceanogr., 25, 549–552. [Google Scholar]
  • Coors A., 1999. Lebensänderung bei Daphnia magna als Reaktion auf verschiedene Umweltfaktoren unter dem Einfluss eines Dispergiermittels. PhD thesis, Rheinisch-Westfäalischen Technischen Hochschule Aachen Germany. [Google Scholar]
  • Coors A., Hammers-Wirtz M. and Ratte H.T., 2004. Adaptation to environmental stress in Daphnia magna simultaneously exposed to a xenobiotic. Chemosphere, 56, 395–404. [CrossRef] [PubMed] [Google Scholar]
  • Cox E.J., Naylor C., Bradley M.C. and Calow P., 1992. Effect of differing maternal ration on adult fecundity and offspring size in laboratory cultures of Daphnia magna Straus for ecotoxicological testing. Aquat. Toxicol., 24, 63–74. [Google Scholar]
  • Dudycha J.L. and Lynch M., 2005. Conserved ontogeny and allometric scaling of resource acquisition and allocation in the Daphniidae. Evolution, 59, 565–576. [PubMed] [Google Scholar]
  • Ebert D., 1993. The trade-off between offspring size and number in Daphnia magna: the influence of genetic, environmental and maternal effects. Arch. Hydrobiol., 90, 453–473. [Google Scholar]
  • Enserink L., de la Haye M. and Maas H., 1993. Reproductive strategy of Daphnia magna: implications for chronic toxicity tests. Aquat. Toxicol., 25, 111–123. [Google Scholar]
  • Gergs A. and Ratte H.T., 2009. Predicting functional response and size selectivity of juvenile Notonecta maculata foraging on Daphnia magna. Ecol. Model., 23, 3331–3341. [Google Scholar]
  • Glazier D.S., 1992. Effects of food, genotype and maternal size on offspring investment in Daphnia magna. Ecology, 73, 910–926. [CrossRef] [Google Scholar]
  • Gliwicz Z.M. and Guisande C., 1992. Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oecologia, 91, 463–467. [CrossRef] [PubMed] [Google Scholar]
  • Gergs A., Zenker A., Grimm V. and Preuss T.G., 2013. Chemical and natural stressors combined: from cryptic effects to population extinction. Scientific Reports (Nature Publishing Group), 3, 2036, DOI: 10.1038/srep02036. [Google Scholar]
  • Goser B., 1997. Dichteabhängige Änderungen der Entwicklung und Reproduktion bei Cladoceran. PhD thesis. Westfäalischen Technischen Hochschule Aachen Germany. [Google Scholar]
  • Goser B. and Ratte H.T., 1994. Experimental evidence of negative interference in Daphnia magna. Oecologia, 98, 354–361. [CrossRef] [PubMed] [Google Scholar]
  • Goulden C.E., Henry L.L. and Berrigan D., 1987. Egg size, postembryonic yolk and survival ability. Oecol. (Berl.), 72, 28–37. [Google Scholar]
  • Guinnee M.A., West S.A. and Little T.J., 2004. Testing small clutch size models with Daphnia. Amer. Nat., 163, 880–887. [CrossRef] [Google Scholar]
  • Guinnee M.A., Gardner A., Howard A.E., West S.A. and Little T.J., 2006. The causes and consequences of variation in offspring size: a case study using Daphnia. J. Evol. Biol., 20, 577–587. [Google Scholar]
  • Guisande C., 1993. Reproductive strategy as population density varies in Daphnia magna (Cladocera). Freshwat. Biol., 29, 463–467. [Google Scholar]
  • Guisande C. and Gliwicz Z.M., 1992. Egg size and clutch size in two Daphnia species grown at different food levels. J. Plankton Res., 14, 997–1007. [CrossRef] [Google Scholar]
  • Hammers-Wirtz M. and Ratte H.T., 2000. Offspring fitness in Daphnia: Is the Daphnia reproduction test appropriate for extrapolating effects on the population level? Environ. Toxicol. Chem., 19, 1856–1866. [Google Scholar]
  • Hülsmann S., 2003. Recruitment patterns of Daphnia: a key for understanding midsummer declines? Hydrobiologia, 491, 35–46. [CrossRef] [Google Scholar]
  • Hülsmann S. and Weiler W., 2000. Adult, not juvenile mortality as a major reason for the midsummer decline of a Daphnia population. J. Plankton Res., 22, 151–168. [Google Scholar]
  • Kooijman S.A.L.M., 2000. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Great Britain. [CrossRef] [Google Scholar]
  • Kuhl A. and Lorenzen H., 1964. Handling and culturing of Chlorella. In: Prescot D.H. (ed.), Methods in Cell Physiology. Academic, New York, NY, USA. [Google Scholar]
  • LaMontagne J.M. and McCauley E., 2001. Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol. Lett., 4, 64–71. [CrossRef] [Google Scholar]
  • Lampert W., 1987. Feeding and nutrition in Daphnia. In: De Marchi (ed.), Daphnia. Memorie dell'istituto Italiano Di Idrobiologia. Verbania Pallanza, Italy, pp. 461–482. [Google Scholar]
  • Lampert W., 1993. Phenotypic plasticity of the size at first reproduction in Daphnia: the importance of maternal size. Ecology, 74, 1455–1466. [CrossRef] [Google Scholar]
  • Lynch M., 1989. The life history consequences of resource depression in Daphnia pulex. Ecology, 70, 246–247. [CrossRef] [Google Scholar]
  • Mckee D. and Ebert D., 1996. The interactive effects of temperature, food level and maternal phenotype on offspring size in Daphnia magna. Oecologia, 107, 189–196. [CrossRef] [PubMed] [Google Scholar]
  • McMahon J.W. and Rigler F.H., 1963. Mechanisms regulating feeding rate of Daphnia magna Straus. Can. J. Zool., 41, 321–327. [Google Scholar]
  • Mousseau T.A. and Fox C.W., 1998. The adaptive significance of maternal effects. Trends Ecol. Evol., 13, 403–407. [Google Scholar]
  • Naylor C., Cox E.J., Bradley M.C. and Calow P., 1992. Effect of differing maternal food ration on susceptibility of Daphnia magna Straus neonates to toxic substances. Aquat. Toxicol., 24, 75–82. [Google Scholar]
  • Perrin N., 1989. Population density and OS in the cladoceran Simocephalus vetulus (Müller). Funct. Ecol., 3, 29–36. [CrossRef] [Google Scholar]
  • Popovic P., 1996. Ist die negative Interferenz ein allgemeines Phänomen bei Cladoceren? PhD thesis. Westfäalischen Technischen Hochschule Aachen, Germany. [Google Scholar]
  • Preuss T.G., Hammers-Wirtz M., Hommen U., Rubach M.N. and Ratte H.T., 2009. Development and validation of an individual based Daphnia magna population model: the influence of crowding on population dynamics. Ecol. Model., 220, 310–329. [Google Scholar]
  • Preuss T.G., Hammers-Wirtz M, Ratte HT, 2010. The potential of individual based population models to extrapolate effects measured at standardized test conditions to relevant environmental conditions-an example for 3,4-dichloroaniline on Daphnia magna. J. Environ. Monit., 12(11), 2070–2079. [CrossRef] [PubMed] [Google Scholar]
  • Rinke K., 2006. Species-oriented model approaches to Daphnia spp.: linking the individual level to the population level. PhD thesis. Technische Universität Dresden, Germany. [Google Scholar]
  • Sakwinska O., 2004. Persistent maternal identity effects on life history traits in Daphnia. Oecologia, 138, 379–386. [CrossRef] [PubMed] [Google Scholar]
  • Stibor H., 1992. Predator induced life-history shifts in a freshwater Cladoceran. Oecologia, 92(2), 162–165. [Google Scholar]
  • Stibor H. and Lüning H.T., 1994. Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Funct. Ecol., 8, 97–101. [Google Scholar]
  • Taylor B.E., 1985. Effects of food limitation on growth and reproduction of Daphnia. Arch. Hydrobiol., 21, 285–296. [Google Scholar]
  • Tessier A.J. and Consolatti N.L., 1991. Resource quantity and offspring quality in Daphnia. Ecology, 72, 468–478. [CrossRef] [Google Scholar]
  • Vanoverbeke J., 2008. Modelling individual and population dynamics in a consumer resource system: Behavior under food limitation and crowding and the effect on population cycling in Daphnia. Ecol. Model., 216, 385–401. [Google Scholar]
  • Wagner A., Hülsmann S., Dörner H., Janssen M., Kahl U., Mehner T. and Benndorf J., 2004. Initiation of the midsummer decline of Daphnia as related to predation, non-consumptive mortality and recruitment: a balance. Arch. Hydrobiol., 160, 1–23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.