Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 4, 2013
Page(s) 287 - 300
DOI https://doi.org/10.1051/limn/2013061
Published online 14 November 2013
  • Álvarez-Cobelas M., Rojo C. and Angeler D.G., 2005. Mediterranean limnology: current status, gaps and the future. J. Limnology, 64, 13–29. [CrossRef] [Google Scholar]
  • Arora J. and Mehra N.K., 2003. Seasonal dynamics of rotifers in relation to physical and chemical conditions of the river Yamuna ( Delhi), India. Hydrobiologia, 491, 101–109. [CrossRef] [Google Scholar]
  • Baranyi C., Hein T., Holarek C., Keckeis S. and Schiemer F., 2002. Zooplankton biomass and community structure in a Danube River floodplain. Freshwater Biol., 47, 473–482. [CrossRef] [Google Scholar]
  • Bass J.A.B., Pinder L.C.V. and Leach D.V., 1997. Temporal and spatial variation in zooplankton populations in the River Great Ouse: an ephemeral food resource for larval and juvenile fish. River Res. Appl., 13, 245–258. [Google Scholar]
  • Behncke B., 2001. Volcanism in the southern Apennines and Sicily. In: Vai G.B. and Martini I.P. (eds.), Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basin, Kluwer Academic Publishers, Dordrecht, 105–120. [CrossRef] [Google Scholar]
  • Beklioglu M., Ince Ö. and Tüzün I., 2003. Restoration of Eutrophic Lake Eymir, Turkey, by biomanipulation undertaken following a major external nutrient control I. Hydrobiologia, 489, 93–105. [CrossRef] [Google Scholar]
  • Bergamasco B., Decembrini F., Azzaro F. and Caruso G., 2010. Hydrological characterization and phytoplankton production in coastal waters at the Alcantara river mouth (Sicily). In: Guglielmo L., Polo M.J., Smoke L. and Young D. (eds.), Center for Integrative Mediterranean Studies (CIMS), VCU Rice Center, Richmond, Virginia. Ecological Water Quality Assessment of Alcantara, James and Guadalfeo Rivers using Bioindicators. Phase I – Alcantara River Study, April 2010. Data Rep. 1, 4–12. [Google Scholar]
  • Bērziņš B. and Pejler B., 1987. Rotifer occurrence in relation pH. Hydrobiologia, 147, 107–116. [CrossRef] [Google Scholar]
  • Boix D. and Sala J., 2002. Riqueza y rareza de los insectos acuáticos de la laguna temporal de Espolla (Pla de l'Estany, Cataluña). Boletín de la Asociación Española de Entomología, 26, 45–57. [Google Scholar]
  • Boix D., Sala J. and Moreno-Amich, R., 2001a. Succession of the macroinvertebrate community in a temporary pond. Ver. Int. Verein. Limnol., 27, 2586–2593. [Google Scholar]
  • Boix D., Sala J. and Moreno-Amich R., 2001b. The faunal composition of Empolla pond ( NE Iberian Peninsula): the neglected biodiversity of temporary waters. Wetlands, 21, 577–592. [CrossRef] [Google Scholar]
  • Boix D., Gascón S., Sala J., Badosa A., Brucet S., Lopez-Flóres R., Martinoy M., Gifre J. and Quintana X.D., 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia, 597, 53–69. [CrossRef] [Google Scholar]
  • Braioni G. and Gelmini D., 1983. Guide per il riconoscimento delle specie animali delle acque interne italiane. Rotiferi monogononti. (Consiglio Nazionale Delle Ricerche AQ/1/200: Italy), Vol. 23, 1–179. [Google Scholar]
  • Branco C.W.C., Esteves F.A., Kozlowsky-Suzuki B., 2000. The zooplankton and other limnological features of a humic coastal lagoon (Lagoa Comprida, Macaé, RJ) in Brazil. Hydrobiologia, 437, 71–81. [CrossRef] [Google Scholar]
  • Bray J.R. and Curtis J.T., 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr., 27, 325–349. [CrossRef] [Google Scholar]
  • Brown A.V., Limbeck R.L. and Schram M.D., 1989. Trophic importance of zooplankton in streams with Alluvial Riffle and Pool Geomorphometry. Arch. Hydrobiol., 114, 349–367. [Google Scholar]
  • Calbet A., 2001. Mesozooplankton grazing impact on primary production: a global comparative analysis. Limnol. Oceanogr., 46, 1824–1830. [CrossRef] [Google Scholar]
  • Caron D.A., Pick F.R. and Lean D.R.S., 1985. Chroococcoid cyanobacteria in Lake Ontario: vertical and seasonal distributions during 1982. J. Phycol., 21, 171–175. [CrossRef] [Google Scholar]
  • Chalkia E., Zacharias I., Thomatou A. and Kehayias G., 2012. Zooplankton dynamics in a gypsum karst lake and interrelation with the abiotic environment. Biologia, 67, 151–163. [CrossRef] [Google Scholar]
  • Chick J.H. and Van Den Avyle M.J., 1999. Zooplankton variability and larval striped bass foraging: evaluating potential match/mismatch regulation. Ecol. Appl., 9, 320–334. [CrossRef] [Google Scholar]
  • Chick J.H., Levchuk A.P., Medley K.A. and Havel J.H., 2010. Underestimation of rotifer abundance a much greater problem than previously appreciated. Limnol. Oceanogr.: Methods, 8, 79–87. [CrossRef] [Google Scholar]
  • Clarke K.R. and Warwick R.M., 2004. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation (2nd edn), Primer–E Ltd, Plymouth, UK. [Google Scholar]
  • Conde J.M., Ramos E. and Morales R., 2004. El zooplancton como integrante de la estructura trófica de los ecosistemas lenticos. Ecosistemas, 13, 23–29. [Google Scholar]
  • Conley W.J. and Turner J.T., 1991. Phytoplankton and zooplankton of the Westport River estuary, Massachusetts (USA). Hydrobiologia, 210, 225–132. [CrossRef] [Google Scholar]
  • Crowe J.H., 1971. Anhydrobiosis: an unsolved problem. Amer. Natural, 105, 563–573. [CrossRef] [Google Scholar]
  • Das M. and Panda T., 2010. Water Quality and Phytoplankton Population in Sewage Fed River of Mahanadi, Orissa, India. J. Life Sci., 2, 81–85. [Google Scholar]
  • de Ruyter van Steveninck E.D., Admiraal W., Breebart L., Tubbing G.M.J., van Zanten B., 1992. Plankton in the River Rhine: structural and functional changes observed during downstream transport. J. Plankton Res., 14, 1351–1368. [CrossRef] [Google Scholar]
  • Dolan J.R. and Gallegos C.L., 1991. Trophic coupling of rotifers, microflagellates, and bacteria during fall months in the Rhode River estuary. Mar. Ecol. - Prog. Ser., 77, 147–156. [CrossRef] [Google Scholar]
  • Dolan J.R. and Gallegos C.L., 1992. Trophic role of planktonic rotifers in the Rhode River estuary, spring and summer, 1991. Mar. Ecol. - Prog. Ser., 85, 187–199. [CrossRef] [Google Scholar]
  • Dussart B., 1969. Les copépodes des Eaux Continentales D'europe Occidentale. Tomo II: Cyclopïdes et Biologie. In: Boubée N. and Cie. (eds.), Internationale Revue der gesamten Hydrobiologie und Hydrographie, Illustrated Cover, Paris, 139–1971. [Google Scholar]
  • Eriksson A.I., 2002. Can predation by net-spining caddids larvae (Trichoptera: Hydropsyche siltalai) cause longitudinal changes in zooplankton species composition in lake outlet streams? Arch. Hydrobiol., 153, 231–244. [Google Scholar]
  • Evans M.S. and Sell W.S., 1985. Mesh size and collection characteristics of 50 cm diameter conical plankton nets. Hydrobiologia, 122, 97–104. [CrossRef] [Google Scholar]
  • Fernández Aláez M., Fernández Aláez C., Rodríguez S. and Bécares E., 1999. Evaluation of the state of conservation of shallow lakes in the province of Leon (Northwest Spain) using botanical criteria. Limnetica, 17, 107–117. [Google Scholar]
  • Ferrari I., Farabegoli A. and Mazzoni R., 1989. Abundance and diversity of planktonic rotifers in the Po River. Hydrobiologia, 186/187, 201–208. [CrossRef] [Google Scholar]
  • Friedrich G. and Pohlmann M., 2009. Long-term plankton studies at the lower Rhine/Germany. Limnologica, 39, 14–39. [CrossRef] [Google Scholar]
  • Gallienne C.P. and Robins D.B., 2001. Is Oithona the most important copepod in the world's oceans? J. Plankton Res., 23, 1421–1432. [CrossRef] [Google Scholar]
  • Gaughan D.J. and Potter I.C., 1995. Composition, distribution and seasonal abundance of zooplankton in a shallow, seasonally closed estuary in temperate Australia. Estuar. Coast. Shelf S., 41, 117–135. [CrossRef] [Google Scholar]
  • Green J., 1972. Freshwater ecology in the Mato Grosso, Central Brazil III. Associations of Rotifera in meander lakes of the Rio Suiá Missú. J. Nat. Hist., 6, 229–241. [CrossRef] [Google Scholar]
  • Hartmut A., Carola S., Werner S., 1990. Rotifers of the genus Synchaeta, an important component of zooplankton in the coastal waters of the Southern Baltic. Limnologica, 21, 233–235. [Google Scholar]
  • Hoffman W., 1977. The influence of abiotic environmental factors on population dynamics in planktonic rotifers. Arch. Hydrobiol. Beih., 8, 77–83. [Google Scholar]
  • Holst H., Zimmermann H., Kausch H., Koste W., 1998. Temporal and Spatial Dynamics of Planktonic Rotifers in the Elbe Estuary during Spring. Est. Coast. Shelf Sci., 47, 261–273. [CrossRef] [Google Scholar]
  • Hopcroft R.R., Roff J.C. and Lombard D., 1998. Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Mar. Biol., 130, 593–604. [CrossRef] [Google Scholar]
  • Horne A.J. and Goldman C.R., 1994. Limnology (2nd edn), McGraw-Hill, New York. [Google Scholar]
  • Hujare M.S., 2005. Hydrobiological studies on some eater reservoirs of Hatkanangale Tahsil (Maharashtra). Ph.D. Thesis, Shivaji University, Kolhapur, India. [Google Scholar]
  • Hwang J., Kumar R., Dahms H., Tseng L. and Chen Q., 2007. Mesh size affects abundance estimates of Oithona spp. (Copepoda, Cyclopoida). Crustaceana, 80, 827–837. [CrossRef] [Google Scholar]
  • Istvánovics V. and Honti M., 2011. Phytoplankton growth in three rivers: the role of meroplankton and the benthic retention hypothesis. Limnol. Oceanogr., 56, 1439–1452. [CrossRef] [Google Scholar]
  • Jack J.D., Thorp J.H., 2002. Impacts of fish predation on an Ohio river zooplankton community. J. Plankton Res., 24, 119–127. [CrossRef] [Google Scholar]
  • Jafari N., Nabavi S.M. and Akhavan M., 2011. Ecological investigation of zooplankton abundance in the River Haraz, Northeaste Iran: impact of environmental variables. Arch. Biol. Sci. Belgrade, 63, 785–798. [CrossRef] [Google Scholar]
  • Jurgens K., Sibbe O. and Jeppesen E., 1999. Impact of metazooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lake. Aquat. Microb. Ecol., 17, 61–75. [CrossRef] [Google Scholar]
  • Keilin D., 1959. The problem of anabiosis or latent life: history and current concept. Proc. R. Soc. Lond., 150, 149–191. [CrossRef] [Google Scholar]
  • Kim H.W. and Joo G.J., 2000. The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiologia, 438, 171–184. [CrossRef] [Google Scholar]
  • Kiss K.T., Ács É. and Kovács A., 1994. Ecological observation on Skeletonema potamus (Weber) Hasle in the River Danube, near Budapest (1991–92, daily investigations). Hydrobiologia, 289, 163–170. [CrossRef] [Google Scholar]
  • Klimowicz H., 1981. The plankton of the river Vistula in the region of Warsaw in the years 1977–1979. Acta Hydrobiol., 23, 47–67. [Google Scholar]
  • Kobayashi T., 1997. Associations between environmental variables and zooplankton body masses in a regulated Australian river. Mar. Freshwater Res., 48, 523–529. [CrossRef] [Google Scholar]
  • Kobayashi T., Shiel R.J., Gibbs P. and Dixon P.I., 1998. Freshwater zooplankton in the Hawkesbury-Nepean River: comparison of community structure with other rivers. Hydrobiologia, 377, 133–145. [CrossRef] [Google Scholar]
  • Lair N., 2006. A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Res. Appl., 22, 567–593. [CrossRef] [Google Scholar]
  • Lair N. and Reyes-Marchant P., 1997. The potamoplankton of the Middle Loire and the role of the “moving littoral” in downstream transfer of algae and rotifers. Hydrobiologia, 356, 33–52. [CrossRef] [Google Scholar]
  • Lopes R.M., 1994. Zooplankton distribution in the Guarau River Estuary (South-eastern Brazil). Estuar. Coast. Shelf Sci., 39, 287–302. [CrossRef] [Google Scholar]
  • Margalef D.R., 1958. Information Theory in Ecology. Gen. Sys., 3, 36–71. [Google Scholar]
  • Margaritora F., 1983. Guide per il riconoscimento delle specie animali delle acque interne italiane. Cladoceri. (Consiglio Nazionale Delle Ricerche AQ/1/197: Italy), Vol. 22, 1–169. [Google Scholar]
  • Martinoy M., Boix D., Sala J., Gascón S., Gifre J., Argerich A., De La Barrera R., Brucet S., Badosa A., López-Flores R., Méndez M., Utge J.M. and Quintana X.D., 2006. Crustacean and aquatic insect assemblages in the Mediterranean coastal ecosystems of Empordá wetlands (NE Iberian peninsula). Limnetica, 25, 665–682. [Google Scholar]
  • Meister A., 1994. Untersuchungen zum Plankton der Elbe und ihrer größeren Nebenflüsse. Limnologica, 24, 153–214. [Google Scholar]
  • Miracle M.R., Alfonso M.T. and Vicente E., 2007. Fish and nutrient enrichment effects on rotifers in a Mediterranean shallow lake: a mesocosm experiment. Hydrobiologia, 593, 77–94. [CrossRef] [Google Scholar]
  • Montesanto B., Ziller S., Danielidis D. and Economou-Amilli A., 2000. Phytoplankton community structure in the lower reach of a Mediterranean river ( Alikmon, Greece). Arch. Hydrobiol., 147, 171–191. [Google Scholar]
  • Mount J., 2010. The Tuolumne River and its watershed. In: Mount J. and Purdy S. (eds.) Confluence: A Natural and human history of the Tuolumne River watershed, Department of Geology and Center for Watershed Science, University of California, Davis, California, 1–11. [Google Scholar]
  • Neves I.F., Rocha O., Roche K.F. and Pinto A.A., 2003. Zooplankton community structure of two marginal lakes of the River Cuiabá (Mato Grosso, Brazil) with analysis of rotifera and cladocera diversity. Braz. J. Biol., 63, 329–343. [PubMed] [Google Scholar]
  • Nogrady T., Wallace R.L. and Snell T.W., 1993. Rotifera, Vol. 1. Biology, ecology and systematics. In: Nogrady T. and Dumont H.J. (eds.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing BV, The Hague, 142. [Google Scholar]
  • Özbay H. and Altindag A., 2009. Zooplankton abundance in the River Kars, Northeast Turkey: impact of environmental variables. Afr. J. Biotechnol., 8, 5814–5818. [Google Scholar]
  • Pace M.L., Findlay S.E.G. and Linds D., 1992. Zooplankton in advective environments: the Hudson River community and a comparative analysis. Can. J. Fish. Aquat. Sci., 4, 1060–1069. [CrossRef] [Google Scholar]
  • Paffenhöfer G.A., 1998. Heterotrophic protozoa and small metazoa: feeding rates and prey–consumer interactions. J. Plankton Res., 20, 121–134. [CrossRef] [Google Scholar]
  • Pantò E., Zagami G. and Guglielmo L., 2007. Struttura de la comunità zooplanctonica del tratto terminale del Fiume Alcantara. Studi e ricerche nel bacino del fiume Alcantara. Atti Acquafest. Available online at: http://www.siciliaparchi.com/public/aquafest2007/abstractTema4_01ElenaPantò.pdf. [Google Scholar]
  • Pereira R., Soares A.M.V.M., Ribeiro R. and Gonçalves F., 2002. Assessing the trophic state of Linhos lake: a first step towards ecological rehabilitation. J. Environ. Manag., 64, 285–297. [CrossRef] [Google Scholar]
  • Pielou E.C., 1969. An Introduction to Mathematical Ecology, Wiley-Interscience, New York, 285 p. [Google Scholar]
  • Piirsoo K., Pall P., Tuvikene A. and Viik M., 2008. Temporal and spatial patterns of phytoplankton in a temperate lowland river ( Emajõgi, Estonia). J. Plankton Res., 30, 1285–1295. [CrossRef] [Google Scholar]
  • Pitois S.G., Shaw M., Fox C.J. and Frid C.L.J., 2009. A new fine-mesh zooplankton time series from the Dove sampling station ( North Sea). J. Plankton Res., 31, 337–343. [CrossRef] [Google Scholar]
  • Porter K.G., 1995. Integrating the microbial loop and the classic food chain into a realistic planktonic food web. In: Polis G.A. and Winemiller K. (eds.), Food Webs: Integration of Patterns and Dynamics. Chapman and Hall, New York (US), 51–59. [Google Scholar]
  • Reckendorfer W., Keckeis H., Winkler G. and Schiemer F., 1999. Zooplankton abundance in the River Danube, Austria: the significance of inshore retention. Freshwater Biol., 41, 583–591. [CrossRef] [Google Scholar]
  • Reynolds C.S., 1988. Potamoplankton: paradigms, paradoxes and prognoses. In: Round F.E. (ed.), Algae and Aquatic Environment. Bioprest, Bristol, 285–311. [Google Scholar]
  • Ricci C., 1998. Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia, 387/388, 321–326. [CrossRef] [Google Scholar]
  • Ricci C. and Balsamo M., 2000. The biology and ecology of lotic rotifers and gastrotrichs. Freshwater Biol., 44, 15–28. [CrossRef] [Google Scholar]
  • Robertson B.A. and Hardy E.R., 1984. Zooplankton of Amazonian lakes and rivers. In: Sioli H. (ed.), The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin, W. Junk Publ., Netherlands, 337–352. [Google Scholar]
  • Romo S., Miracle M.R., Villena M.J., Rueda J., Ferriol C. and Vicente E., 2004. Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biol., 49, 1593–1607. [CrossRef] [Google Scholar]
  • Rueda F., Moreno-Ostos E. and Armengol J., 2006. The residence time of river water in reservoirs. Ecol. Model., 191, 260–274. [CrossRef] [Google Scholar]
  • Sabater S., Artigas J., Duran C., Pardos M., Romani A.M., Tornes E. and Ylla I., 2008. Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). Sci. Total Environ., 404, 196–206. [CrossRef] [PubMed] [Google Scholar]
  • Sampson S.J., Chick J.H. and Pegg M.A., 2008. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. Biol. Invas., 11, 483–496. [CrossRef] [Google Scholar]
  • Schiemer F., Keckeis H., Reckendorfer W. and Winkler G., 2001. The “inshore retention concept” and its significance for large rivers. Arch. Hydrobiol., Large Rivers 2–4, 509–516. [Google Scholar]
  • Shannon C.E. and Weaver W., 1963. The Mathematical Theory of Communication, University of Illinois Press, Urbana, 1–117. [Google Scholar]
  • Shiel R.J. and Walker K.F., 1984. Zooplankton of regulated and unregulated rivers: the Murray–Darling system, Australia. In: Lillehammer A. and Salviet S.J. (eds.), Regulated Rivers, University of Olso Press, Olso, 263–270. [Google Scholar]
  • Soballe D.M. and Kimmel B.L., 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology, 68, 1943–1954. [CrossRef] [PubMed] [Google Scholar]
  • Špoljar M., Habdija I. and Primc-Habdija B., 2007. The influence of the lotic and lentic stretches on the Zooseston Flux through the Plitvice Lakes (Croatia). Ann. Limnol. - Int. J. Lim., 43, 29–40. [CrossRef] [EDP Sciences] [Google Scholar]
  • Špoljar, M., Dražina, T., Ostojić, A., Miliša, M., Gligora Udovič, M. & Štafa D., 2012a. Bryophyte communities and seston in a karst stream (Jankovac stream, Papuk Nature Park, Croatia). Ann. Limnol. - Int. J. Lim., 48, 125–138. [CrossRef] [EDP Sciences] [Google Scholar]
  • Špoljar, M., Dražina, T., Šargač, J., Kralj Borojević, K. & Žutinić, P., 2012b. Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow-through system ( Papuk Nature Park, Croatia). Ann. Limnol. - Int. J. Lim., 48, 161–175. [CrossRef] [EDP Sciences] [Google Scholar]
  • Stockner J.G., 1987. Lake fertilization: the enrichment cycle and lake sockeye salmon (Oncorhynchus nerka) production. In: Margolis H.D. and Wood C.C.(eds.), Sock- Eye Salmon (Oncorhynchus nerka) Population Biology and Future Management, Canadian Special Publication Fisheries Aquatic Sciences 96, Ottawa, 198–215. [Google Scholar]
  • Suikkanen S., Laamanen M. and Huttunen M., 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar. Coast. Shelf Sci., 71, 580–592. [CrossRef] [Google Scholar]
  • Sumorok B., Zelazna-Wieczorek J. and Kostrzewa K., 2009. Qualitative and quantitative phytoseston changes in two different stream-order river segments over a period of twelve years (Grabia and Brodnia, central Poland). Inst. Oceanogr., 38, 55–63. [Google Scholar]
  • Tafe D.J., 1990. Zooplankton and salinity in the Rufiji River delta, Tanzania. Hydrobiologia, 208, 123–130. [CrossRef] [Google Scholar]
  • Thorp J.H., Black A.R., Haag K.H. and Wehr J.D., 1994. Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Can. J. Fish. Aquat. Sci., 51, 1634–1643. [CrossRef] [Google Scholar]
  • Van Dijk G.M. and Van Zanten B., 1995. Seasonal changes in zooplankton abundance in the lower Rhine during 1987–1991. Hydrobiologia, 304, 29–38. [CrossRef] [Google Scholar]
  • Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. and Cushing C.E., 1980. The River continuum concept. Can. J. Aquat. Sci., 37, 130–137. [CrossRef] [Google Scholar]
  • Viroux L., 1997. Zooplankton development in two large lowland rivers, the Moselle: France and the Meuse: Belgium in 1994. J. Plankton Res., 19, 1743–1762. [CrossRef] [Google Scholar]
  • Viroux L., 2002. Seasonal and longitudinal aspects of microcrustacean (Cladocera, Copepoda) dynamics in a lowland river. J. Plankton Res., 24, 281–292. [CrossRef] [Google Scholar]
  • Watson N.H.F., 1974. Zooplankton of the St. Lawrence Great Lakes-species composition, distribution, and abundance. J. Fisheries Res. Board. Can., 31, 783–794. [CrossRef] [Google Scholar]
  • Welker M. and Walz N., 1998. Can mussels control the plankton in rivers? – a planktological approach applying a Lagrangian sampling strategy. Limnol. Oceanogr., 43, 753–762. [CrossRef] [Google Scholar]
  • Wu N., Schmalz B. and Fohrer N., 2011. Distribution of phytoplankton in a German lowland river in relation to environmental factors. J. Plankton Res., 33, 807–820. [CrossRef] [Google Scholar]
  • Zarfdjian M., Michaloudie E., Bobori D.C. and Mourelatos S., 2000. Zooplankton abundance in the Aliakmon River, Greece, Belg. J. Zool., 130, 29–33. [Google Scholar]
  • Zhou S.C., Huang X.F. and Cai Q.H., 2009. Temporal and spatial distributions of rotifers in Xiangxi Bay of the Three Gorges Reservoir, China. Int. Rev. Hydrobiol., 94, 542–559. [CrossRef] [Google Scholar]
  • Zimmermann-Timm H., Holst H. and Kausch H., 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: how important are retentive shoreline habitats for the plankton community? Hydrobiologia, 593, 49–58. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.