Editor's Choice
Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 4, 2013
Page(s) 275 - 285
DOI https://doi.org/10.1051/limn/2013060
Published online 27 November 2013
  • Ahlgren G., Lundstedt L., Brett M. and Forsberg C., 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res., 12, 809–818. [CrossRef] [Google Scholar]
  • Andersen T., 1997. Pelagic Nutrient Cycles: Herbivores as Sources and Sinks, Springer-Verlag, Berlin, 280 p. [Google Scholar]
  • Arvola L., Salonen K., Kankaala P. and Lehtovaara A., 1992. Vertical distributions of bacteria and algae in a steeply stratified humic lake under high grazing pressure from Daphnia longispina. Hydrobiologia, 229, 253–269. [CrossRef] [Google Scholar]
  • Barker T., Irfanullah H.MD. and Moss B., 2010. Micro-scale structure in the chemistry and biology of a shallow lake. Freshw. Biol., 55, 1145–1163. [CrossRef] [Google Scholar]
  • Blinn D.W. and Green J., 1986. A pump sampler study of microdistribution in Walker Lake, Arizona, U.S.A.: a senescent crater lake. Freshw. Biol., 16, 175–185. [CrossRef] [Google Scholar]
  • Boix D., Biggs J., Céréghino R., Hull A.P., Kalettka T. and Oertli B., 2012. Pond research and management in Europe: “Small is Beautiful”. Hydrobiologia, 689, 1–9. [CrossRef] [Google Scholar]
  • Branco B.F. and Torgersen T., 2009. Predicting the onset of thermal stratification in shallow inland waterbodies. Aquat. Sci., 71, 65–79. [CrossRef] [Google Scholar]
  • Brönmark C. and Hansson L.-A., 1998. The Biology of Lakes and Ponds, Oxford University Press, New York, 216 p. [Google Scholar]
  • Burks R.L., Lodge D.M., Jeppesen E. and Lauridsen T.L., 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshw. Biol., 47, 343–365. [CrossRef] [Google Scholar]
  • Ford P.W., Boon P.I. and Lee K., 2002. Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia, 485, 97–110. [CrossRef] [Google Scholar]
  • Fox H.M., 1948. The haemoglobin of Daphnia. Proc. R. Soc. Lond. Ser. B, Biol. Sci., 135, 195–212. [CrossRef] [Google Scholar]
  • Gilbert J.J. and Hampton S.E., 2001. Diel vertical migrations of zooplankton in a shallow, fishless pond: a possible avoidance-response cascade induced by notonectids. Freshw. Biol., 46, 611–621. [CrossRef] [Google Scholar]
  • Gliwicz Z.M., 1986. Predation and the evolution of vertical migration behavior in zooplankton. Nature, 320, 746–748. [CrossRef] [Google Scholar]
  • Gulati R.D. and DeMott W.R., 1997. The role of food quality for zooplankton: remarks on the state-of-art, perspectives and priorities. Freshw. Biol., 38, 753–768. [CrossRef] [Google Scholar]
  • Gulyás P. and Forró L., 1999. Az ágascsápú rákok (Cladocera) kishatározója [A guide for the identification of Cladocera occurring in Hungary – in Hungarian with English abstract], Vízi természet-és környezetvédelem 9, Környezetgazdálkodási Intézet, Budapest, 237 p. [Google Scholar]
  • Heisey D. and Porter K.G., 1977. The effect of ambient oxygen concentration on filtering and respiration rates of Daphnia galeata mendotae and Daphnia magna. Limnol. Oceanogr., 22, 839–845. [CrossRef] [Google Scholar]
  • Hembre L.K. and Megard R.O., 2003. Seasonal and diel patchiness of a Daphnia population: An acoustic analysis. Limnol. Oceanogr., 48, 2221–2233. [CrossRef] [Google Scholar]
  • Herbert M.R., 1954. The tolerance of oxygen deficiency in the water by certain Cladocera. Mem. Ist. Ital. Idrobiol., 8, 97–107. [Google Scholar]
  • Keresztessy K., May K., Weiperth A., Vad Cs.F. and Farkas J., 2012. Hosszú távú halfaunisztikai vizsgálatok és a veszélyeztetett lápi póc populációbiológiája a Duna–Tisza köze két Ramsari területén [Long-term fish faunistic research and the population biology of the threatened European mudminnow in two Ramsar wetlands of the Danube–Tisza Interfluve. – In Hungarian with English summary]. Pisces Hungarici, 6, 47–54. [Google Scholar]
  • Kessler K. and Lampert W., 2004. Depth distribution of Daphnia in response to a deep-water algal maximum: the effect of body size and temperature gradient. Freshw. Biol., 49, 392–401. [CrossRef] [Google Scholar]
  • Komárek J. and Anagnostidis K., 1998. Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl H., Gärtner G., Heynig H. and Mollenhauer D. (eds.), Süsswasserflora von Mitteleuropa 19/1, Gustav Fischer Verlag, Stuttart, 548 p. [Google Scholar]
  • Komárek J. and Anagnostidis K., 2005. Cyanoprokaryota 2. Teil: Oscillatoriales. In: Büdel B., Krienitz L., Gärtner G. and Schagerl M. (eds.), Süsswasserflora von Mitteleuropa 19/2, Elsevier/Spektrum, Heidelberg, 759 p. [Google Scholar]
  • Kring R.L. and O'Brien W.J., 1976. Effect of varying oxygen concentrations on the filtering rate of Daphnia pulex. Ecology, 57, 808–814. [CrossRef] [Google Scholar]
  • Kuczyńska-Kippen N., 2001. Diurnal vertical distribution of rotifers (Rotifera) in the Chara zone of Budzyńskie Lake, Poland. Hydrobiologia, 446/447, 195–201. [CrossRef] [Google Scholar]
  • Lampert W., McCauley E. and Manly B.F.J., 2003. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs? Proc. R. Soc. Lond. Ser. B, Biol. Sci., 270, 765–773. [CrossRef] [PubMed] [Google Scholar]
  • Larsson P. and Lampert W., 2012. Finding the optimal vertical distribution: behavioural responses of Daphnia pulicaria to gradients of environmental factors and the presence of fish. Freshwat. Biol., 57, 2514–2525. [CrossRef] [Google Scholar]
  • Lauridsen T.L. and Buenk I., 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Arch. Hydrobiol., 137, 167–176. [Google Scholar]
  • Lauridsen T.L., Jeppesen E., Søndergaard M. and Lodge D., 1998. Horizontal migration of zooplankton: predator-mediated use of macrophyte habitat. In: Jeppesen E., Søndergaard Ma., Søndergaard Mo. and Christoffersen K. (eds.), The Structuring Role of Submerged Macrophytes in Lakes, Springer-Verlag, New York, 233–239. [CrossRef] [Google Scholar]
  • Lynch M., 1978. Complex interactions between natural coexploiters – Daphnia and Ceriodaphnia. Ecology, 59, 552–564. [CrossRef] [Google Scholar]
  • Massana R., Gasol J.M., Jürgens K. and Pedrós-Alió C., 1994. Impact of Daphnia pulex on a metalimnetic microbial community. J. Plankton Res., 16, 1379–1399. [CrossRef] [Google Scholar]
  • Meerhoff M., Iglesias C., Teixeira de Mello F., Clemente J.M., Jensen E., Lauridsen T.L., Jeppesen E., 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw. Biol., 52, 1009–1021. [CrossRef] [Google Scholar]
  • Moss B., 1988. Ecology of Fresh Waters: Man and Medium, Blackwell Scientific Publications, London, 417 p. [Google Scholar]
  • Müller-Navarra D.C., Brett M.T., Liston A.M. and Goldman C.R., 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403, 74–77. [CrossRef] [PubMed] [Google Scholar]
  • Nurminen L.K.L. and Horppila J.A., 2002. A diurnal study on the distribution of filter feeding zooplankton: Effect of emergent macrophytes, pH and lake trophy. Aquat. Sci., 64, 198–206. [CrossRef] [Google Scholar]
  • Oertli B., Céréghino R., Hull A. and Miracle R., 2009. Pond conservation: from science to practice. Hydrobiologia, 634, 1–9. [CrossRef] [Google Scholar]
  • Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson G.L., Sólymos P., Stevens M.H.H., Wagner H., 2012. Vegan: Community ecology package, R package version 2.0–4, Available online at: http://CRAN.R-project.org/package=vegan. [Google Scholar]
  • Orcutt J.D. Jr. and Porter K.G., 1983. Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol. Oceanogr., 28, 720–730. [CrossRef] [Google Scholar]
  • Paul R.J., Colmorgen M., Pirow R., Chen Y-H. and Tsai M-C., 1998. Systemic and metabolic responses in Daphnia magna to anoxia. Comp. Biochem. Physiol. A, Mol. Integr. Physiol., 120, 119–125. [CrossRef] [Google Scholar]
  • Pilati A. and Wurtsbaugh W.A., 2003. Importance of zooplankton for the persistence of a deep chlorophyll layer: a limnocorral experiment. Limnol. Oceanogr., 48, 249–260. [CrossRef] [Google Scholar]
  • Ranta E. and Nuutinen V., 1985. Daphnia exhibit diurnal vertical migration in shallow rock-pools. Hydrobiologia, 127, 253–256. [CrossRef] [Google Scholar]
  • Rautio M. and Tartarotti B., 2010. UV radiation and freshwater zooplankton: damage, protection and recovery. Freshw. Rev., 3, 105–131. [CrossRef] [PubMed] [Google Scholar]
  • Rautio M., Korhola A. and Zellmer I.D., 2003. Vertical distribution of Daphnia longispina in a shallow subarctic pond: does the interaction of ultraviolet radiation and Chaoborus predation explain the pattern? Polar Biol., 26, 659–665. [CrossRef] [Google Scholar]
  • R Development Core Team, 2009. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0; Available online at: http://www.r-project.org. [Google Scholar]
  • Rhode S.C., Pawlowski M. and Tollrian R., 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature, 412, 69–72. [CrossRef] [PubMed] [Google Scholar]
  • Rocha O. and Duncan A., 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J. Plankton Res., 7, 279–294. [CrossRef] [Google Scholar]
  • Romanovsky Y.E. and Feniova I.Y., 1985. Competition among Cladocera: effect of different levels of food supply. Oikos, 44, 243–252. [CrossRef] [Google Scholar]
  • Rydin H. and Jeglum J.K., 2006. The Biology of Peatlands, Oxford University Press, New York, 343 p. [Google Scholar]
  • Salonen K. and Lehtovaara A., 1992. Migrations of haemoglobin-rich Daphnia longispina in a small, steeply stratified, humic lake with an anoxic hypolimnion. Hydrobiologia, 229, 271–288. [CrossRef] [Google Scholar]
  • Sell A.F., 1998. Adaptation to oxygen deficiency: Contrasting patterns of haemoglobin synthesis in two coexisting Daphnia species. Comp. Biochem. Physiol. A, Mol. Integr. Physiol., 120, 119–125. [CrossRef] [Google Scholar]
  • Tikkanen T. and Willén T., 1992. Växtplanktonflora, Naturvårdsverket, Solna, 280 p. [Google Scholar]
  • Tinson S. and Laybourn-Parry J., 1985. The behavioural responses and tolerance of freshwater benthic cyclopoid copepods to hypoxia and anoxia. Hydrobiologia, 127, 257–263. [CrossRef] [Google Scholar]
  • Utermöhl H., 1958. Zur Vervollkommung der qualitativen Phytoplankton-Methodik. Mitt. Int. Ver. Theor. Angew. Limnol., 9, 1–38. [Google Scholar]
  • Vad Cs.F., Horváth Zs., Kiss K.T., Ács É., Török J.K. and Forró L., 2012. Seasonal dynamics and composition of cladoceran and copepod assemblages in ponds of a Hungarian cutaway peatland. Int. Rev. Hydrobiol., 97, 420–434. [CrossRef] [Google Scholar]
  • Vadstein O., Jensen A., Olsen Y. and Reinertsen H., 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanogr., 33, 489–503. [CrossRef] [Google Scholar]
  • V.-Balogh K., Németh B. and Vörös L., 2009. Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds. Hydrobiologia, 632, 91–105. [CrossRef] [Google Scholar]
  • von Elert E., Martin-Creuzburg D. and Le Coz J.R., 2003. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. R. Soc. Lond. Ser. B, Biol. Sci., 270, 1209–1214. [CrossRef] [Google Scholar]
  • Wanzenböck J., 1995. Current knowledge on the European mudminnow, Umbra krameri Walbaum, 1792 (Pisces: Umbridae). Ann. Naturhist. Mus. Wien B, Bot. Zool., 97, 439–449. [Google Scholar]
  • Weider L.J. and Lampert W., 1985. Differential response of Daphnia genotypes to oxygen stress: respiration rates, hemoglobin content and low-oxygen tolerance. Oecologia, 65, 487–491. [CrossRef] [PubMed] [Google Scholar]
  • Wetzel R.G. and Likens G.E., 1991. Limnological Analyses, Springer-Verlag, New York, 391 p. [Google Scholar]
  • Williamson C.E., Sanders R.W., Moeller R.E. and Stutzman P.L., 1996. Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory. Limnol. Oceanogr., 41, 224–233. [CrossRef] [Google Scholar]
  • Williamson C.E., Fischer J.M., Bollens S.M., Overholt E.P. and Breckenridge J.K., 2011. Towards a more comprehensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr., 56, 1603–1623. [CrossRef] [Google Scholar]
  • Winder M., Spaak P. and Mooij W.M., 2004. Trade-offs in Daphnia habitat selection. Ecology, 85, 2027–2036. [CrossRef] [Google Scholar]
  • Zaret T.M. and Suffern J.S., 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr., 21, 804–813. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.