Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 3, 2013
Page(s) 225 - 235
DOI https://doi.org/10.1051/limn/2013052
Published online 22 August 2013
  • Amé M.V. and Wunderlin D.A., 2005. Effects of iron, ammonium and temperature on microcystin content by a natural concentrated Microcystis aeruginosa population. Water Air Soil Pollut., 168, 235–248. [CrossRef] [Google Scholar]
  • APHA, AWWA and WEF, 2005. Standard Methods for the Examination of Water and Wastewater (21st edn,), American Public Health Association, Washington, DC. [Google Scholar]
  • Beresovsky D., Hadas O., Livne A., Sukenik A., Kaplan A. and Carmeli S., 2006. Toxins and biologically active secondary metabolites of Microcystis sp. isolated from Lake Kinneret. Isr. J. Chem., 46, 79–87. [CrossRef] [Google Scholar]
  • Bickel H., Lyck S. and Utkilen H., 2000. Energy state and toxin content – experiments on Microcystis aeruginosa (Chroococcales, Cyanophyta). Phycologia, 39, 212–218. [CrossRef] [Google Scholar]
  • Briand J.F., Jacquet S., Bernard C. and Humbert J.F., 2003. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet. Res., 34, 361–377. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Burger D.F., Hamilton D.P. and Pilditch C.A., 2008. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol. Model., 211, 411–423. [CrossRef] [Google Scholar]
  • Campos A. and Vasconcelos V., 2010. Molecular mechanisms of microcystin toxicity in animal cells. Int. J. Mol. Sci., 11, 268–287. [CrossRef] [PubMed] [Google Scholar]
  • Caraco N.F., 1993. Disturbance of the phosphorus cycle – a case of indirect effects of human activity. Trends Ecol. Evol., 8, 51–54. [CrossRef] [PubMed] [Google Scholar]
  • Carmichael W.W., 1992. Cyanobacteria secondary metabolites – the cyanotoxins. J. Appl. Bacteriol., 72, 445–459. [CrossRef] [PubMed] [Google Scholar]
  • Carmichael W.W., 2008. A world overview – one-hundred-twenty-seven years of research on toxic cyanobacteria – where do we go from here? In: Hudnell H.K. (ed.), Cyanobacterial Harmful Algal Blooms, Springer, New York, 949 p. [Google Scholar]
  • Chorus I., Falconer I.R., Salas H.J. and Bartram J., 2000. Health risks caused by freshwater cyanobacteria in recreational waters. J. Toxicol. Environ. Heal. B, 3, 323–347. [CrossRef] [Google Scholar]
  • Cymbola J., Ogdahl M. and Steinman A.D., 2008. Phytoplankton response to light and internal phosphorus loading from sediment release. Freshwater Biol., 53, 2530–2542. [CrossRef] [Google Scholar]
  • Dai R.H., Liu H.J., Qu J.H., Zhao X., Ru J. and Hou Y.N., 2008. Relationship of energy charge and toxin content of Microcystis aeruginosa in nitrogen-limited or phosphorous-limited cultures. Toxicon, 51, 649–658. [CrossRef] [PubMed] [Google Scholar]
  • Davis T.W., Berry D.L., Boyer G.L. and Gobler C.J., 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8, 715–725. [CrossRef] [Google Scholar]
  • Deblois C.P. and Juneau P., 2010. Relationship between photosynthetic processes and microcystin in Microcystis aeruginosa grown under different photon irradiances. Harmful Algae, 9, 18–24. [CrossRef] [Google Scholar]
  • Dzialowski A.R., Wang S.H., Lim N.C., Beury J.H. and Huggins D.G., 2008. Effects of sediment resuspension on nutrient concentrations and algal biomass in reservoirs of the Central Plains. Lake Reserv. Manage., 24, 313–320. [CrossRef] [Google Scholar]
  • Ekholm P. and Krogerus K., 2003. Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. Hydrobiologia, 492, 29–42. [CrossRef] [Google Scholar]
  • Funari E. and Testai E., 2008. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol., 38, 97–125. [CrossRef] [PubMed] [Google Scholar]
  • Giani A., Bird D.F., Prairie Y.T. and Lawrence J.F., 2005. Empirical study of cyanobacterial toxicity along a trophic gradient of lakes. Can. J. Fish. Aquat. Sci., 62, 2100–2109. [CrossRef] [Google Scholar]
  • Grace M.R., Scicluna T.R., Vithana C.L., Symes P. and Lansdown K.P., 2010. Biogeochemistry and cyanobacterial blooms: Investigating the relationship in a shallow, polymictic, temperate lake. Environ. Chem., 7, 443–456. [CrossRef] [Google Scholar]
  • Hadas O., Pinkas R., Delphine E., Vardi A., Kaplan A. and Sukenik A., 1999. Limnological and ecophysiological aspects of Aphanizomenon ovalisporum bloom in Lake Kinneret, Israel. J. Plankton Res., 21, 1439–1453. [CrossRef] [Google Scholar]
  • Head R.M., Jones R.I. and Bailey-Watts A.E., 1999. Vertical movements by planktonic cyanobacteria and the translocation of phosphorus: Implications for lake restoration. Aquatic Conserv., 9, 111–120. [CrossRef] [Google Scholar]
  • Holm-Hansen O., Lorenzen C.J., Holmes R.W. and Strickland J.D.H., 1965. Fluorometric determination of chlorophyll. J. Conseil, 30, 3–15. [CrossRef] [Google Scholar]
  • Jähnichen S., Ihle T., Petzoldt T. and Benndorf J., 2007. Impact of inorganic carbon availability on microcystin production by Microcystis aeruginosa PCC 7806. Appl. Environ. Microb., 73, 6994–7002. [CrossRef] [Google Scholar]
  • Jeppesen E., Søndergaard M., Jensen J.P., Havens K.E., Anneville O., Carvalho L., Coveney M.F., Deneke R., Dolulil M.T., Foy B., Gerdeaux D., Hampton S.E., Hilt S., Kangur K., Köhler J., Lammens E.H.H.R., Lauridsen T.L., Manca M., Miracle M.R., Moss B., Nõges P., Persson G., Phillips G., Portielje R., Romo S., Schelske C.L., Straile D., Tatrai I., Willén E. and Winder M., 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biol., 50, 1747–1771. [CrossRef] [Google Scholar]
  • Kaplan A., Harel M., Kaplan-Levy R.N., Hadas O., Sukenik A. and Dittmann E., 2012. The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front. Microbiol., 3, 138. [CrossRef] [PubMed] [Google Scholar]
  • Kardinaal W.E.A., Janse I., Kamst-van Agterveld M., Meima M., Snoek J., Mur L.R., Huisman J., Zwart G. and Visser P.M., 2007. Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquat. Microb. Ecol., 48, 1–12. [CrossRef] [Google Scholar]
  • Kotak B.G. and Zurawell R.W., 2007. Cyanobacterial toxins in Canadian freshwaters: a review. Lake Reserv. Manage., 23, 109–122. [CrossRef] [Google Scholar]
  • Kotak B.G., Lam A.K.Y., Prepas E.E. and Hrudey S.E., 2000. Role of chemical and physical variables in regulating microcystin-LR concentration in phytoplankton of eutrophic lakes. Can. J. Fish. Aquat. Sci., 57, 1584–1593. [CrossRef] [Google Scholar]
  • Landsberg J.H., 2002. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci., 10, 113–390. [CrossRef] [Google Scholar]
  • Lawton L.A., Edwards C. and Codd G.A., 1994. Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst, 119, 1525–1530. [CrossRef] [PubMed] [Google Scholar]
  • Long B.M., 2010. Evidence that sulfur metabolism plays a role in microcystin production by Microcystis aeruginosa. Harmful Algae, 9, 74–81. [CrossRef] [Google Scholar]
  • Lukač M. and Aegerter R., 1993. Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon, 31, 293–305. [CrossRef] [PubMed] [Google Scholar]
  • Malmaeus J.M. and Rydin E., 2006. A time-dynamic phosphorus model for the profundal sediments of Lake Erken, Sweden. Aquat. Sci., 68, 16–27. [CrossRef] [Google Scholar]
  • Nalewajko C. and Murphy T.P., 1998. A bioassay to assess the potential effects of sediment resuspension on phytoplankton community composition. J. Appl. Phycol., 10, 341–348. [CrossRef] [Google Scholar]
  • Oh H.M., Lee S.J., Jang M.H. and Yoon B.D., 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl. Environ. Microb., 66, 176–179. [CrossRef] [Google Scholar]
  • Orr P.T. and Jones G.J., 1998. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr., 43, 1604–1614. [CrossRef] [Google Scholar]
  • Ostrovsky I., Yacobi Y.Z., Walline P. and Kalikhman I., 1996. Seiche-induced mixing: its impact on lake productivity. Limnol. Oceanogr., 41, 323–332. [CrossRef] [Google Scholar]
  • Ostrovsky I., Rimmer A., Yacobi Y.Z., Nishri A., Sukenik A., Hadas O. and Zohary T., 2013. Long-term changes in the Lake Kinneret ecosystem: the anthropogenic factors. In: Goldman C.R., Kumagai M. and Robarts R.D. (eds.), Climate Change and Global Warming of Inland Waters: Impacts and Mitigation for Ecosystems and Societies, John Wiley and Sons, Ltd., West Sussex, 271–293. [Google Scholar]
  • Ozawa K., Fujioka H., Muranaka M., Yokoyama A., Katagami Y., Homma T., Ishikawa K., Tsujimura S., Kumagai M., Watanabe M.F. and Park H.D., 2005. Spatial distribution and temporal variation of Microcystis species composition and microcystin concentration in Lake Biwa. Environ. Toxicol., 20, 270–276. [CrossRef] [PubMed] [Google Scholar]
  • Pearson L., Mihali T., Moffitt M., Kellmann R. and Neilan B., 2010. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine Drugs, 8, 1650–1680. [CrossRef] [PubMed] [Google Scholar]
  • Preston T., Stewart W.D.P. and Reynolds C.S., 1980. Bloom-forming cyanobacterium Microcystis aeruginosa overwinters on sediment surface. Nature, 288, 365–367. [CrossRef] [Google Scholar]
  • Rantala A., Fewer D.P., Hisbergues M., Rouhiainen L., Vaitomaa J., Börner T. and Sivonen K., 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. P. Natl. Acad. Sci. USA, 101, 568–573. [CrossRef] [Google Scholar]
  • Rantala A., Rajaniemi-Wacklin P., Lyra C., Lepistö L., Rintala J., Mankiewiez-Boczek J. and Sivonen K., 2006. Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Appl. Environ. Microb., 72, 6101–6110. [CrossRef] [PubMed] [Google Scholar]
  • Rinta-Kanto J.M., Konopko E.A., DeBruyn J.M., Bourbonniere R.A., Boyer G.L. and Wilhelm S.W., 2009. Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8, 665–673. [CrossRef] [Google Scholar]
  • Serruya C., 1978. Lake Kinneret, Dr. W. Junk Publishers, The Hague. [CrossRef] [Google Scholar]
  • Sevilla E., Martin-Luna B., Vela L., Bes M.T., Fillat M.F. and Peleato M.L., 2008. Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ. Microbiol., 10, 2476–2483. [CrossRef] [PubMed] [Google Scholar]
  • Sivonen K. and Jones G., 1999. Cyanobacterial toxins. In: Chorus, I. and Bartram, J. (eds.), Toxic Cyanobacteria in Water – a Guide to their Public Health Consequences, Monitoring, and Management, E & FN Spon, London, 41–111. [Google Scholar]
  • Smolders A.J.P., Lamers L.P.M., Lucassen E.C.H.E.T., Van Der Velde G. and Roelofs J.G.M., 2006. Internal eutrophication: how it works and what to do about it – a review. Chem. Ecol., 22, 93–111. [CrossRef] [Google Scholar]
  • Søndergaard M., Jensen J.P. and Jeppesen E., 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia, 408/409, 145–152. [CrossRef] [Google Scholar]
  • Tessenow U., Frevert T., Hofgastner W. and Moser A., 1977. Ein simultan schliesender serienwasserchopfer fur sedimentkontwasser mit fotoelektrischer selbstauslosung und fakultativem sedimentstecher. Arch. Hydrobiol., 48(Supplement), 438–452. [Google Scholar]
  • Verspagen J.M.H., Snelder E.O.F.M., Visser P.M., Jöhnk K.D., Ibelings B.W., Mur L.R. and Huisman J., 2005. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshwater Biol., 50, 854–867. [CrossRef] [Google Scholar]
  • Via-Ordorika L., Fastner J., Kurmayer R., Hisbergues M., Dittmann E., Komarek J., Erhard M. and Chorus I., 2004. Distribution of microcystin-producing and non-microcystin-producing Microcystis sp in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst. Appl. Microbiol., 27, 592–602. [CrossRef] [PubMed] [Google Scholar]
  • Welch E.B. and Cooke G.D., 1995. Internal phosphorus loading in shallow lakes: importance and control. Lake Reserv. Manage., 11, 273–281. [CrossRef] [Google Scholar]
  • WHO, 2008. Guidelines for Drinking-Water Quality (3rd edn,), World Health Organization, Geneva. [Google Scholar]
  • Wicks R.J. and Thiel P.G., 1990. Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypereutrophic African reservoir. Environ. Sci. Technol., 24, 1413–1418. [CrossRef] [Google Scholar]
  • Zilliges Y., Kehr J.-C., Meissner S., Ishida K., Mikkat S., Hagemann M., Kaplan A., Börner T. and Dittmann E., 2011. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PloS ONE, 6, e17615. [CrossRef] [PubMed] [Google Scholar]
  • Zohary T., 2004. Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshwater Biol., 49, 1355–1371. [CrossRef] [Google Scholar]
  • Zurawell R.W., Chen H., Burke J.M. and Prepas E.E., 2005. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J. Toxicol. Env. Heal. B, 8, 1–37. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.