Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 3, 2013
Page(s) 207 - 223
DOI https://doi.org/10.1051/limn/2013056
Published online 02 September 2013
  • Balogh J. and Mahunka S., 1983. Primitive Oribatids of the Palaearctic Region, Akadémia Kiadó, Budapest, 372 p. [Google Scholar]
  • Bartoš E., 1959. Vířníci – Rotatoria. Fauna ČSR, sv. 15, NČSAV, Praha, 969 p. [Google Scholar]
  • Bateman L. and Davis C., 1980. The Rotifera of hummock-hollow formation in a poor (mesotrophic) fen in Newfoundland. Int. Revue ges. Hydrobiol., 65, 127–153. [CrossRef] [Google Scholar]
  • Beasley C.W., 1995. In: G. Ramazzotti and W. Maucci (ed.). The phylum Tardigrada (3rd edn), English translation. McMurry University, Abilene, Texas, USA, 1014 p. [Google Scholar]
  • Bērziņš B. and Pejler B., 1987. Rotifer occurrence in relation to pH. Hydrobiologia, 147, 107–116. [CrossRef] [Google Scholar]
  • Bielańska-Grajner I., Mieczan T. and Cudak A., 2011. Co-occurence of ciliates and rotifers in peat mosses. Polish J. Environ. Stud., 20, 533–540. [Google Scholar]
  • Błedzki L.A. and Ellison A.M., 2003. Diversity of rotifers from northeastern U.S.A. bogs with new species records for North America and New England. Hydrobiologia, 497, 53–62. [CrossRef] [Google Scholar]
  • Bobrov A.A., Charman D.J. and Warner B.G., 1999. Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in Western Russia with special attention to niche separation in closely related taxa. Protist, 150, 125–136. [CrossRef] [PubMed] [Google Scholar]
  • Bojková J., Schenková J., Horsák M. and Hájek M., 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia, 667, 159–171. [CrossRef] [Google Scholar]
  • Botosaneanu L. (ed.), 1998. Studies in crenobiology. The Biology of Springs and Springbrooks, Backhuys Publishers, Leiden, 261 p. [Google Scholar]
  • Charman D.J., 1997. Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. J. R. Soc. New. Zeal., 27, 465–483. [CrossRef] [Google Scholar]
  • Charman D.J., Blundell A. and ACCROTELM Members, 2007. A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J. Quaternary Sci., 22, 209–221. [CrossRef] [Google Scholar]
  • Clymo R.S., 1963. Ion exchange in Sphagnum and its relation to bog ecology. Ann. Bot., 27, 309–324. [Google Scholar]
  • Clymo R.S., 1984. Sphagnum-dominated peat bog—a naturally acid ecosystem. Phil. Trans. R. Soc. Lond. B, 305, 487–499. [CrossRef] [Google Scholar]
  • Couteaux M.M., 1975. Écologie des thécamoebiens de quelques humus bruts forestiers. Rev. Ecol. Biol. Sol., 12, 421–447. [Google Scholar]
  • Couteaux M.M., 1976. Dynamisme de l'équilibre des thécamoebiens dans quelques sols climaciques. Mem. Mus. Nat. Hist. Nat., Ser. A. Zool., 96, 1–183. [Google Scholar]
  • Dufrêne M. and Legendre P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366. [Google Scholar]
  • Duggan I.C., Green J.D. and Shiel R.J., 2001. Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia, 446/447, 155–164. [CrossRef] [Google Scholar]
  • Foissner W., Berger H., Blatterer H. and Kohlmann F., 1995a. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems–Band IV: Gymnostomatea, Loxodes, Suctoria. Band II: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamtes für Wasserwirtsch., 1/95, 1–540. [Google Scholar]
  • Foissner W., Berger H., Blatterer H. and Kohlmann F., 1995b. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems–Band II: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamtes für Wasserwirtsch., 5/92, 1–502. [Google Scholar]
  • Francez A.-J. and Dévaux J., 1985. Répartition des rotifères dans deux lacs-tourbières du Massif Central (France). Hydrobiologia, 128, 265–276. [CrossRef] [Google Scholar]
  • Fránková M., Bojková J., Poulíčková A. and Hájek M., 2009. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea, 9, 355–368. [Google Scholar]
  • Gerecke R., Stoch F., Meisch C. and Schrankel I., 2005. Die Fauna der Quellen und des hyporheischen Interstitials in Luxemburg. Ferrantia, 41, 140 p. [Google Scholar]
  • Gilbert D. and Mitchell E., 2006. Microbial diversity in Sphagnum peatlands. In: Martini I.P., Martinez Cortizas A. and Chestworth W (eds.), Peatlands: Evolution and Records of Environmental and Climatic Changes, Amsterdam, Elsevier, 289–320. [Google Scholar]
  • Gilbert D., Mitchell E.A.D., Amblard C., Bourdier G. and Francez A.J., 2003. Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozool., 42, 99–104. [Google Scholar]
  • Gyliarov M.S. (ed.), 1975. A key to the soil-inhabiting mites. Sarcoptiformes, Nauka, Moskva, 491 p. [Google Scholar]
  • Hájek M. and Hekera P., 2004. Can seasonal variation in fen water chemistry influence the reliability of vegetation-environmental analyses? Preslia, 76, 1–14. [Google Scholar]
  • Hájek M., Hekera P. and Hájková P., 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobot., 37, 205–224. [CrossRef] [Google Scholar]
  • Hájek M., Horsák M., Hájková P. and Dítě D., 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant. Ecol., 8, 97–114. [CrossRef] [Google Scholar]
  • Hájek M., Horsák M., Tichý L., Hájková P., Dítě D. and Jamrichová E., 2011. Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J. Biogeogr., 38, 742–755. [CrossRef] [Google Scholar]
  • Hájková P. and Hájek M., 2004. Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobot., 39, 335–351. [CrossRef] [Google Scholar]
  • Hájková P., Bojková J., Fránková M., Opravilová V., Hájek M., Kintrová K. and Horsák M., 2011. Disentangling the effects of water chemistry and substratum structure on moss-dwelling unicellular and multicellular micro-organisms in spring-fens. J. Limnol., 70, 54–64. [Google Scholar]
  • Halsey L.A., Vitt D.H. and Gignac L.D., 2000. Sphagnum dominated peatlands in North America since the last glacial maximum: their occurrence and extent. Bryologist, 103, 334–352. [CrossRef] [Google Scholar]
  • Heal O.W., 1964. Observations on the seasonal and spatial distribution of Testacea (Protozoa, Rhizopoda) in Sphagnum. J. Anim. Ecol., 33, 395–412. [CrossRef] [Google Scholar]
  • Hindák F., 1978. Sladkovodné Riasy, SPN, Bratislava, 728 p. [Google Scholar]
  • Horsák M. and Hájek M., 2003. Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor-rich gradient. J. Mollus. Stud., 69, 349–357. [CrossRef] [Google Scholar]
  • Horsák M., Hájek M., Spitale D., Hájková P., Dítě D. and Nekola J.C., 2012. The age of island-like habitats impacts habitat specialist species richness. Ecology 93, 1106–1114. [CrossRef] [PubMed] [Google Scholar]
  • Jassey V.E.J., Chiapusio G., Mitchell E.A.D., Binet P., Toussaint M.L. and Gilbert D., 2010. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow fen/bog gradient. Microb. Ecol., 61, 374–385. [CrossRef] [Google Scholar]
  • Jassey V.E.J., Shimano S., Dupuy C., Toussaint M.-L. and Gilbert D., 2012. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow “fen-bog” gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist, 163, 451–464. [CrossRef] [PubMed] [Google Scholar]
  • Karlin E.F. and Bliss L.C., 1984. Variation in substrate chemistry along microtopographical and water-chemistry gradients in peatlands. Can. J. Bot., 62, 142–153. [CrossRef] [Google Scholar]
  • Lamentowicz Ł., Lamentowicz M. and Gabka M., 2008. Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands, 28, 164–175. [CrossRef] [Google Scholar]
  • Malmer N., 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Can. J. Bot., 64, 375–383. [CrossRef] [Google Scholar]
  • Mattheeussen R., Ledeganck P., Vincke S., van de Vijver B., Nijs I. and Beyens L., 2005. Habitat selection of aquatic testate amoebae communities on Qeqertarsuaq (Disko Island), West Greenland. Acta Protozool., 44, 253–263. [Google Scholar]
  • Mazei Y.A. and Tsyganov A.N., 2006. Presnovodnyje rakovinnyje amebby, Tovarishtshestvo nautchnyh izdanij KMK, Moscow, 304 p. [Google Scholar]
  • McCune B. and Mefford M.J., 2011. PC-ORD. Multivariate analysis of ecological data. Version 6. MjM Software, Gleneden Beach, Oregon, USA. [Google Scholar]
  • Mieczan T., 2006. Species diversity of Protozoa (Rhizopoda, Ciliata) on mosses of Sphagnum in restoration areas of the Poleski national park. Acta Agrophys., 7, 453–459. [Google Scholar]
  • Mieczan T., 2007. Epiphytic protozoa (testate amoebae and ciliates) associated with Sphagnum in peatbogs: relationship to chemical parameters. Pol. J. Ecol., 55, 79–90. [Google Scholar]
  • Mieczan T., 2009. Ecology of testate amoebae (Protists) in Sphagnum peatlands of eastern Poland: vertical micro-distribution and species assemblages in relation to environmental parameters. Ann. Limnol. - Int. J. Lim., 45, 41–49. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mitchell E.A.D., Buttler A.J., Warner B.G. and Gobat J.M., 1999. Ecology of testate amoebae (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France. Ecoscience, 6, 565–576. [Google Scholar]
  • Mitchell E.A.D., Buttler A., Grosvernier P., Rydin H., Albinsson C., Greenup A.L., Heijmans M.M.P.D., Hoosbeek M.R. and Saarinen T., 2000. Relationships among testate amoebae (Protozoa), vegetation and water chemistry in five Sphagnum-dominated peatlands in Europe. New Phytol., 145, 95–106. [CrossRef] [Google Scholar]
  • Mitchell E.A.D., Bragazza L. and Gerdol R., 2004. Testate amoebae (Protista) communities in Hylocomium splendens (Hedw.) B.S.G. (Bryophyta): relationships with altitude, and moss elemental chemistry. Protist, 155, 423–436. [CrossRef] [PubMed] [Google Scholar]
  • Nogrady T., Wallace R.L. and Snell T.W., 1993. Rotifera. Volume 1: Biology, ecology and systematics. In: Dumont H. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, SPB Academic Publishing, The Hague, 142 p. [Google Scholar]
  • Opravilová V. and Hájek M., 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the Western Carpathians. Acta Protozool., 45, 191–204. [Google Scholar]
  • Payne R., Gauci V. and Charman D.J., 2010. The impact of simulated sulfate deposition on peatland testate amoebae. Microb. Ecol., 59, 76–83. [CrossRef] [PubMed] [Google Scholar]
  • Payne R.J., 2010. Testate amoeba response to acid deposition in a Scottish peatland. Aquat. Ecol., 44, 373–385. [CrossRef] [Google Scholar]
  • Payne R.J., 2011. Can testate amoeba-based palaeohydrology be extended to fens? J. Quaternary Sci., 26, 15–27. [CrossRef] [Google Scholar]
  • Pejler B. and Bērziņš B., 1994. On the ecology of Lecane (Rotifera). Hydrobiologia, 273, 77–80. [CrossRef] [Google Scholar]
  • Poulíčková A., Hájek M. and Rybníček K. (eds.), 2005. Ecology and Palaeoecology of Spring Fens in the Western Part of the Carpathians, Palacký University, Olomouc, 209 p. [Google Scholar]
  • Rapant S., Vrana K. and Bodiš D., 1996. Geochemical atlas of Slovakia. In: Vrana K. (ed.), Part I Groundwater, GSSR, Bratislava, 127 p. [Google Scholar]
  • R Development Core Team. 2011. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna. [Google Scholar]
  • Schnitchen C., Charman D.J., Magyari E., Braun M., Grigorszky I., Tóthmérész B., Molnár M. and Szántó Zs., 2006. Reconstructing hydrological variability from testate amoebae analysis in Carpathian peatlands. J. Paleolimnol., 36, 1–17. [CrossRef] [Google Scholar]
  • Schwank P., 1990. Gastrotricha. In: Schwank P. and Bartsch I. (eds.), Gastrotricha und Nemertini, Süsswasserfauna von Mitteleuropa, 3/1+2, Gustav Fischer, Stuttgart, 252 p. [Google Scholar]
  • Segers H., 1995. Rotifera 2: The Lecanidae (Monogononta). Guides to the identification of the microinvertebrates of the continental waters of the World. In: Dumont H.J.F. and Nogrady T. (eds.), SPB Academic Publishing, The Hague, Netherlands, 226 p. [Google Scholar]
  • Segers H., 1996. The biogeography of littoral Lecane Rotifera. Hydrobiologia, 323, 169–197. [CrossRef] [Google Scholar]
  • Smith H.G. and Headland R.K., 1983. The population ecology of soil testate rhizopods on the sub-Antarctic island of South Georgia. Rev. Ecol. Biol. Sol., 20, 269–284. [Google Scholar]
  • Sullivan M.E. and Booth R.K., 2011. The potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum peatlands. Microb. Ecol., 62, 80–93. [CrossRef] [PubMed] [Google Scholar]
  • Timm T., 2009. A guide to the freshwater Oligochaeta and Polychaeta of northern and central Europe. Lauterbornia, 66, 1–235. [Google Scholar]
  • van Breemen N., 1995. How Sphagnum bogs down other plants. Trends Ecol. Evol., 10, 270–275. [CrossRef] [PubMed] [Google Scholar]
  • Voigt M., 1957. Rotatoria. Die Rädertiere Mitteleuropas. I. Textband: 1–508, II. Tafelband: 115 Tab, Borntraeger, Berlin. [Google Scholar]
  • Warner B.G., 1987. Abundance and diversity of testate amoebae (Rhizopoda, Testacea) in Sphagnum peatlands in southwestern Ontario, Canada. Arch. Protistenkd., 133, 173–189. [CrossRef] [Google Scholar]
  • Warner B.G. and Charman D.J., 1994. Holocene changes on a peatland in northwestern Ontario interpreted from testate amoebae (Protozoa) analysis. Boreas, 23, 270–279. [CrossRef] [Google Scholar]
  • Weigmann G., 2006. Die Tierwelt Deutschlands, Teil 76: Hornmilben (Oribatida), Goecke and Evers, Keltern, 520 p. [Google Scholar]
  • Williams D.D. and Danks H.V., 1991. Athropods of springs, with particular reference to Canada. Mem. Entomol. Soc. Can., 155, 217 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.