Free Access
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 2, 2013
Page(s) 139 - 147
Published online 18 June 2013
  • Azumi H., Goto N. and Mitamura O., 2009. Regeneration of silicic acid from sediment in Lake Biwa, Japan. Verh. Int. Verein. Limnol., 30, 1041–1045. [Google Scholar]
  • Bendschneider K. and Robinson R.J., 1952. A new spectrophotometric method for the determination of nitrite in sea water. J. Mar. Res., 11, 87–96. [Google Scholar]
  • Billen G., Lancelot C. and Meybeck M., 1991. N, P, and Si retention along the aquatic continuum from land to ocean. In: Matoura R.F.C., Martin J.M. and Wollast R. (eds.), Ocean Margin Processes in Global Change, Wiley and Sons, Chichester, 19–44. [Google Scholar]
  • Bootsma H.A., Hecky R.E., Johnson T.C., Kling H.J. and Mwita J., 2003. Inputs, outputs, and internal cycling of silica in a large, tropical lake. J. Great. Lakes. Res., 29, 121–138. [Google Scholar]
  • Conley D.J., 2002. Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem. Cy., 16, 68-1–68-8. [Google Scholar]
  • Conley D.J., Schelske C.L. and Stoermer E.F., 1993. Modification of the biogeochemical cycle of silica with eutrophication. Mar. Ecol. Progr. Ser., 101, 179–192. [Google Scholar]
  • DeMaster D.J., 1981. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta, 45, 1715–1732. [CrossRef] [Google Scholar]
  • Fujinaga T. and Hori T., 1982. Analytical methods of lake water. In: Environmental Chemistry on Lake Biwa, Japan Society for the Promotion and Science, Tokyo, 113–131 (in Japanese). [Google Scholar]
  • Garnier J., Beusen A., Thieu V., Billen G. and Bouwman L., 2010. N:P:Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach. Global Biogeochem. Cy., 24, BG0A05. [Google Scholar]
  • Gong G.C., Chang J., Chiang K.P., Hsiung T.M., Hung C.C., Duan S.W. and Codispoti L.A., 2006. Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the three Gorges dam? Geophys. Res. Lett., 33, L07610. [CrossRef] [Google Scholar]
  • Goto N., Iwata T., Akatsuka T., Ishikawa M., Kihira M., Azumi H., Anbutsu K. and Mitamura O., 2007. Environmental factors which influence the sink of silica in the limnetic system of the large monomictic Lake Biwa and its watershed in Japan. Biogeochemistry, 84, 285–295. [CrossRef] [Google Scholar]
  • Goto N., Kihira M. and Ishida N., 2008. Seasonal distribution of photosynthetically active phytoplankton using pulse amplitude modulated (PAM) fluorometry in the large monomictic Lake Biwa, Japan. J. Plankton. Res., 30, 1169–1177. [Google Scholar]
  • Hofmann A., Roussy D. and Filella M., 2002. Dissolved silica budget in the North basin of Lake Lugano. Chem. Geol., 182, 35–55. [Google Scholar]
  • Holm-Hansen O., Lorenzen C.J., Holmes R.W. and Strickland J.D.H., 1965. Fluorometric determination of chlorophyll. J. Cons. Cons. Int. Explor. Mer., 30, 3–15. [Google Scholar]
  • Homborg C., Pastuszak M., Aigars J., Siegmund H., Mörth C.-M. and Ittekkot V., 2006. Decreased silica land-sea fluxes through damming in the Baltic Sea catchment – Significance of particle trapping and hydrological alterations. Biogeochemistry, 77, 265–281. [CrossRef] [Google Scholar]
  • Hori T., Itasaka O. and Mitamura O., 1969. The removal of dissolved silica from freshwater in the Lake Biwa-ko. Mem. Fac. Liberal Arts Educ. Shiga Univ., 19, 45–51 (in Japanese with English summary). [Google Scholar]
  • Horne A.J. and Goldman C.R., 1994. Phytoplankton and periphyton. In: Limnology, 2nd edn, McGraw-Hill, New York, 226–264. [Google Scholar]
  • Humborg C., Ittekkot V., Cociasu A. and Bodungen B., 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386, 385–388. [CrossRef] [Google Scholar]
  • Humborg C., Conley D.J., Rahm L., Wulff F., Cociasu A. and Ittekkot V., 2000. Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio, 29, 45–50. [Google Scholar]
  • Kawabata K., 1987. Ecology of large phytoplankton in Lake Biwa: population dynamics and food relations with zooplankters. Bull. Plankton Soc. Japan, 34, 165–172. [Google Scholar]
  • Kawamura S. and Goto K., 1994. Silicate. In: The Japan Society for Analytical Chemistry, Hokkaido Branch (ed.), Mizu no bunseki, 4th edn, Kagakudojin, Kyoto, 181–184 (in Japanese). [Google Scholar]
  • Menzel D.W. and Corwin N., 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fraction by persulfate oxidation. Limnol. Oceanogr., 10, 280–282. [Google Scholar]
  • Miyajima T., Nakano S. and Nakanishi M., 1995. Planktonic diatoms in pelagic silicate cycle in Lake Biwa. Jpn J. Limnol., 56, 211–220. [Google Scholar]
  • Müller B., Maerki M., Schmid M., Vologina E.G., Wehrli B., Wüest A. and Sturm M., 2005. Internal carbon and nutrient cycling in Lake Baikal: sedimentation, upwelling, and early diagenesis. Global Planet. Change, 46, 101–124. [CrossRef] [Google Scholar]
  • Mullin J.B. and Riley J.P., 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Anal. Chim. Acta, 12, 162–176. [CrossRef] [Google Scholar]
  • Murphy J. and Riley J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta, 27, 31–36. [CrossRef] [Google Scholar]
  • Negoro K., 1960. Studies on the diatom-vegetation of Lake Biwa-ko. Jpn J. Limnol., 21, 200–220 (in Japanese). [Google Scholar]
  • Negoro K., 1967. An analytical study of diatom shells in the bottom deposits of Lake Biwa-ko, based on a new core-sample. Jpn J. Limnol., 28, 132–135 (in Japanese). [Google Scholar]
  • Nixon S.W., 2003. Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the mediterranean by a great river?Ambio, 32, 30–39. [PubMed] [Google Scholar]
  • Pilskaln C.H., 2004. Seasonal and interannual particle export in an African rift valley lake: a 5-yr record from Lake Malawi, southern East Africa. Limnol. Oceanogr., 49, 964–977. [Google Scholar]
  • Poister D. and Armstrong D.E., 2003. Seasonal sedimentation trends in a mesotrophic lake: influence of diatoms and implications for phosphorus dynamics. Biogeochemistry, 65, 1–13. [CrossRef] [Google Scholar]
  • Ragueneau O., Tréguer P., Leynaert A., Anderson R.F., Brzezinski M.A., DeMaster D.J., Dugdale R.C., Dymond J., Fischer G., François R., Heinze C., Maier-Reimer E., Martin-Jézéquel V., Nelson D.M. and Quéguiner B., 2000. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet. Change, 26, 317–365. [CrossRef] [Google Scholar]
  • Ryves D.B., Jewson D.H., Sturm M., Battarbee R.W., Flower R.J., Mackay A.W. and Granin N.G., 2003. Quantitative and qualitative relationships between planktonic diatom communities and diatom assemblages in sedimenting material and surface sediments in Lake Bikal, Siberia. Limnol. Oceanogr., 48, 1643–1661. [Google Scholar]
  • Sagi T., 1966. Determination of ammonia in sea water by the indophenol method and its application to the coastal and off-shore waters. Oceanograph. Mag., 18, 43–51. [Google Scholar]
  • Saxton M.A., D'souza N.A., Bourbonniere R.A., McKay R.M.L. and Wilhelm S.W., 2012. Seasonal Si:C ratios in Lake Erie diatoms — evidence of an active winter diatom community. J. Great Lakes Res., 38, 206–211. [Google Scholar]
  • Schelske C.L. and Stoermer E.F., 1971. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science, 173, 423–424. [CrossRef] [PubMed] [Google Scholar]
  • Schelske C.L. and Stoermer E.F., 1972. Phosphorus, silica and eutrophication in Lake Michigan. In: Likens G.E. (ed.), Nutrients and Eutrophication. American Society of Limnology and Oceanography, Kansas, 157–171. [Google Scholar]
  • Schelske C.L., Eadie B.J. and Krausse G.I., 1984. Measured and predicted fluxes of biogenic silica in Lake Michigan. Limnol. Oceanogr., 29, 99–110. [Google Scholar]
  • Schreiber U., Hormann H., Neubauer C. and Klughammer C., 1995. Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust. J. Plant. Physiol., 22, 209–220. [Google Scholar]
  • Sferratore A., Billen G., Garnier J., Smedberg E., Humborg C. and Rahm L., 2008. Modelling nutrient fluxes from sub-arctic basins: comparison of pristine vs. dammed rivers. J. Mar. Syst., 73, 236–249. [Google Scholar]
  • Sicko-Goad L.M., Schelske C.L. and Stoermer E.F., 1984. Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limonol. Oceanogr., 29, 1170–1178. [Google Scholar]
  • Teubner K. and Dokulil M.T., 2002. Ecological stoichiometry of TN: TP: SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages. Arch. Hydrobiol., 154, 625–646. [Google Scholar]
  • Tezuka Y., 1984. Seasonal variations of dominant phytoplankton, chlorophyll a and nutrient levels in the pelagic regions of Lake Biwa. Jap. J. Limnol., 45, 26–37. [Google Scholar]
  • Turner R.E., Rabalais N.N., Justic D. and Dortch Q., 2003. Global patterns of dissolved N, P and Si in large Rivers. Biogeochemistry, 64, 297–317. [CrossRef] [Google Scholar]
  • Wetzel R.G., 2001. Iron, sulfur, and silica cycles. In: Limnology–Lake and River Ecosystems–, Academic Press, San Diego, 289–330. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.