Editor's Choice
Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 2, 2013
Page(s) 149 - 155
DOI https://doi.org/10.1051/limn/2013043
Published online 18 June 2013
  • Baier T. and Neuwirth E., 2007. Excel :: COM :: R. Comput. Stat., 22, 91–108. [CrossRef] [MathSciNet] [Google Scholar]
  • Barthélémy D. and Caraglio Y., 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot., 99, 375–407. [CrossRef] [PubMed] [Google Scholar]
  • Buzás I., 1988. Soil- and Agrochemical Methods Manual. Parts 1–2. Mezőgazd. K. Budapest (in Hungarian). [Google Scholar]
  • Cenzato D. and Ganf G., 2001. A comparison of growth responses between two species of Potamogeton with contrasting canopy architecture. Aquat. Bot., 70, 53–66. [CrossRef] [Google Scholar]
  • Cronin G. and Lodge D.M., 2003. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia, 137, 32–41. [CrossRef] [PubMed] [Google Scholar]
  • Crossley M.N., Dennison W.C., Williams R.R. and Wearing A.H., 2002. The interaction of water flow and nutrients on aquatic plant growth. Hydrobiologia, 489, 63–70. [CrossRef] [Google Scholar]
  • Csermák K. and Máté F., 2004. Soils of Lake Balaton, VE Georgikon Kar, Keszthely, Hungary (in Hungarian). [Google Scholar]
  • De Jong G., 2005. Evolution of phenotypic plasticity: patterns of plasticity and the emergence of ecotypes. New Phytol., 166, 101–118. [CrossRef] [PubMed] [Google Scholar]
  • De Kroon H., Huber H., Stuefer J.F. and Van Groenendael J.M., 2005. A modular concept of phenotypic plasticity in plants. New Phytol., 166, 73–82. [CrossRef] [PubMed] [Google Scholar]
  • Funk J.L., Jones C.G. and Lerdau M.T., 2007. Leaf- and shoot-level plasticity in response to different nutrient and water availabilities. Tree Physiol., 27, 17–31. [Google Scholar]
  • Garbey C., Thiebaut G. and Muller S., 2006. An experimental study of the plastic responses of Ranunculus peltatus Schrank to four environmental parameters. Hydrobiologia, 570, 41–46. [CrossRef] [Google Scholar]
  • Karban R., 2008. Plant behaviour and communication. Ecol. Lett., 11, 727–739. [CrossRef] [PubMed] [Google Scholar]
  • Máté F., 1985. Mapping of recent sediments in Lake Balaton. Annual Report of the Hungarian National Geological Institute, 367–379 (in Hungarian). [Google Scholar]
  • Miner B.G., Sultan S.E., Morgan S.G., Padilla D.K. and Relyea R.A., 2005. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol., 20, 685–692. [CrossRef] [PubMed] [Google Scholar]
  • Moore K.A. and Wetzel R.L., 2000. Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems. J. Exp. Mar. Biol. Ecol., 244, 1–28. [CrossRef] [Google Scholar]
  • Orians C.M. and Jones C.G., 2001. Plants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability. Oikos, 94, 493–504. [CrossRef] [Google Scholar]
  • Orians C.M., Ardon M. and Mohammad B.A., 2002. Vascular architecture and patchy nutrient availability generate within-plant heterogeneity in plant traits important to herbivores. Am. J. Bot., 89, 270. [CrossRef] [PubMed] [Google Scholar]
  • Présing M., Preston T., Takátsy A., Sprőber P., Kovács A.W., Vörös L., Kenesi G. and Kóbor I., 2008. Phytoplankton nitrogen demand and the significance of internal and external nitrogen sources in a large shallow lake (Lake Balaton, Hungary). Hydrobiologia, 599, 87–95. [CrossRef] [Google Scholar]
  • Schlichting C.D. and Piglucci M., 1998. Phenotypic evolution: a reaction norm perspective. Sinauer Associates Sunderland, MA. [Google Scholar]
  • Sultan S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5, 537–542. [CrossRef] [PubMed] [Google Scholar]
  • Tóth V.R., Vári Á. and Luggosi S., 2011. Morphological and photosynthetic acclimation of Potamogeton perfoliatus to different environments in Lake Balaton. Ocean. Hydrobiol. Stud., 40, 43–51. [CrossRef] [Google Scholar]
  • Vári Á., Tóth V.R. and Csontos P., 2010. Comparing the morphology of Potamogeton perfoliatus L. along environmental gradients in Lake Balaton (Hungary). Ann. Limnol-Int. J. Lim., 46, 111–119. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wells C.L. and Pigliucci M., 2000. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspect. Plant Ecol., 3, 1–18. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.