Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 4, 2012
Page(s) 383 - 390
DOI https://doi.org/10.1051/limn/2012029
Published online 17 December 2012
  • Andersen R., Luu H.A., Chen D.Z.X., Holmes C.F.B., Kent M., Le Blanc M., Taylor F.J.R. and Williams D.E., 1993. Chemical and biological evidence links microcystins to salmon netpen liver disease. Toxicon, 31, 1315–1323. [CrossRef] [PubMed] [Google Scholar]
  • Andrew T.E. and Andrew J.A.M., 2005. Seasonality of rotifers and temperature in Lough Neagh,N. Ireland. Hydrobiologia, 546, 451–455. [CrossRef] [Google Scholar]
  • Blaha L., Babica P. and Marsalek B., 2009. Toxins produced in cyanobacterial water blooms – toxicity and risks. Interdiscip. Toxicol., 2, 36–41. [CrossRef] [PubMed] [Google Scholar]
  • Briand J.F., Jacquet S., Bernard C. and Humbert J.F., 2003. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet. Res., 34, 361–377. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Burkhardt-Holm P., 2010. Endocrine disruptors and water quality: a state-of-the-art review. Int. J. Water Resources Dev., 26, 477–493. [CrossRef] [Google Scholar]
  • Carmichael W.W., 2001. Health effects of toxin-producing cyanobacteria: the cyano HABs. Hum. Ecol. Risk Assess., 7, 1393–1407. [CrossRef] [Google Scholar]
  • Carmichael W.W. and Falconer I.R., 1993. Diseases related to freshwater blue green algal toxins, and control measures. In: Falconer I.R. (ed.), Algal Toxins in Seafood and Drinking Water, Academic, London, 187–209. [CrossRef] [Google Scholar]
  • Carmichael W.W., Azevedo S.M., An J.S., Molica R.J.R., Jochimsen E.M., Lau S., Rinehart K.L., Shaw G.R. and Eaglesham G.K., 2001. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ. Health Perspect., 109, 663–668. [CrossRef] [PubMed] [Google Scholar]
  • Cazenave J., Bistoni M.A., Zwirnmann E., Wunderlin D.A. and Wiegand C., 2006. Attenuating effects of natural organic matter on microcystin toxicity in zebra fish (Danio rerio) embryos – benefits and costs of microcystin detoxication. Environ. Toxicol., 21, 22–32. [CrossRef] [PubMed] [Google Scholar]
  • Chen J., Zhang D., Xie P., Wang Q. and Ma Z., 2009a. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms. Sci. Total Environ., 407, 3317–3322. [CrossRef] [Google Scholar]
  • Chen J., Xie P., Li L. and Xu J., 2009b. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol. Sci., 108, 81–89. [CrossRef] [Google Scholar]
  • Chen W., Song L.R., Ou D.Y. and Gan N.Q., 2005. Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LR. Environ. Toxicol., 20, 323–330. [CrossRef] [PubMed] [Google Scholar]
  • Chen Y., Wang J.Q., Wang Y. and Yu S.Z., 2002. Toxicity and population growth effects of microcystin on the rotifer Brachionus plicatilis. China Environ. Sci., 22, 198–201 (in Chinese with English abstract). [Google Scholar]
  • Chorus I. and Bartram J., 1999. Toxic Cyanobacteria in Water: a Guide to their Public Health Consequences, Monitoring and Management, E & FN Spon, London. [CrossRef] [Google Scholar]
  • Claska M.E. and Gilbert J.J., 1998. The effect of temperature on the response of Daphnia to toxic cyanobacteria. Freshwater Biol., 39, 221–232. [CrossRef] [Google Scholar]
  • Codd G.A., 2000. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol. Eng., 16, 51–60. [CrossRef] [Google Scholar]
  • Cohen P., 1989. The structure and regulation of protein phosphatases. Annu. Rev. Biochem., 58, 435–508. [CrossRef] [Google Scholar]
  • Dao T.S., Do-Hong L.C. and Wiegand C., 2010. Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring. Toxicon, 55, 1244–1254. [CrossRef] [PubMed] [Google Scholar]
  • DeMott W.R., 1989. The role of competition in zooplankton succession. In: Sommer U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer-Verlag, Berlin, 195–252. [CrossRef] [Google Scholar]
  • DeMott W.R., Zhang Q.X. and Carmichael W.W., 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr., 36, 1346–1357. [CrossRef] [Google Scholar]
  • Fastner J., Codd G.A., Metcalf J.S., Woitke P., Wiedner C. and Utkilen H., 2002. An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material. Anal. Bioanal. Chem., 374, 437–444. [CrossRef] [PubMed] [Google Scholar]
  • Forbes V.E. and Calow P., 1999. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ. Toxicol. Chem., 18, 1544–1556. [CrossRef] [Google Scholar]
  • Gama-Flores J.L., Sarma S.S.S. and Nandini S., 2005. Interaction among copper toxicity, temperature and salinity on the population dynamics of Brachionus rotundiformis (Rotifera). Hydrobiologia, 546, 559–568. [CrossRef] [Google Scholar]
  • Gan N., Mi L., Sun X., Dai G., Chung F.L. and Song L., 2010. Sulforaphane protects microcystin-LR-induced toxicity through activation of the Nrf2-mediated defensive response. Toxicol. Appl. Pharmacol., 47, 129–137. [CrossRef] [Google Scholar]
  • Geng H. and Zhu X.S., 2008. Effect of temperature on the experimental population of Brachionus calyciflorus. J. South-Central Univ. National., 27, 21–23 (in Chinese with English abstract). [Google Scholar]
  • Ghadouani A., Pinel-Alloul B., Plath K., Codd G.A. and Lampert W., 2004. Effects of Microcystis aeruginosa and purified microcystin-LR on the feeding behavior of Daphnia pulicaria. Limnol. Oceanogr., 49, 666–679. [CrossRef] [Google Scholar]
  • Gilbert J.J., 1996. Effect of temperature on the response of planktonic rotifers to a toxic cyanobacterium. Ecology, 77, 1174–1180. [CrossRef] [Google Scholar]
  • Halbach U., Siebert M., Westermayer M. and Wissel C., 1983. Population ecology of rotifers as a bioassay tool for ecotoxicological tests in aquatic environments. Ecotoxicol. Environ. Saf., 7, 484–513. [CrossRef] [PubMed] [Google Scholar]
  • Hansson L.A., Gustafsson S., Rengefors K. and Bomark L., 2007. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biol., 52, 1290–1301. [CrossRef] [Google Scholar]
  • Heugens E.H.W., Hendriks A.J., Dekker T., van Stralen N.M. and Admiraal W., 2001. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit. Rev. Toxicol., 31, 247–284. [CrossRef] [PubMed] [Google Scholar]
  • Hietala J., Lauren-Maatta C. and Walls M., 1997. Sensitivity of Daphnia to toxic cyanobacteria: effects of genotype and temperature. Freshwater Biol., 37, 299–306. [CrossRef] [Google Scholar]
  • Hoeger S.J., Hitzfeld B.C. and Dietrich D.R., 2005. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol. Appl. Pharmacol., 203, 231–242. [CrossRef] [PubMed] [Google Scholar]
  • Huisman J., Matthijs H.P. and Visser P.M., 2005. Harmful Cyanobacteria, Springer, Berlin. [CrossRef] [Google Scholar]
  • Hulot F.D., Carmignac D., Legendre S., Yéprémian C. and Bernard C., 2012. Effects of microcystin-producing and microcystin-free strains of Planktothrix agardhii on long-term population dynamics of Daphnia magna. Ann. Limnol. - Int. J. Lim., 48, 337–347. [CrossRef] [EDP Sciences] [Google Scholar]
  • Janssen C.R., Ferrando M.D. and Persoone G., 1993. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus: I. Conceptual framework and application. Hydrobiologia, 255/256, 21–32. [CrossRef] [Google Scholar]
  • Jöhnk K.D., Huisman J., Sharples J., Sommeijer B., Visser P.M. and Stroom J.M., 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biol., 14, 495–512. [CrossRef] [Google Scholar]
  • Jones G.J. and Orr P.T., 1994. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res., 28, 871–876. [CrossRef] [Google Scholar]
  • Ke L.X., Xi Y.L., Zha C.W. and Dong L.L., 2009. Effects of three organophosphorus pesticides on population growth and sexual reproduction of rotifer Brachionus calycifiorus Pallas. Acta Ecol. Sin., 29, 182–185. [CrossRef] [Google Scholar]
  • Lahti K., Rapala J., Färdig M., Niemelä M. and Sivonen K., 1997. Persistence of cyanobacteria hepatotoxin microcystin-LR in particulate material and dissolved in lake water. Water Res., 31, 1005–1012. [CrossRef] [Google Scholar]
  • Lampert W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. N. Z. J. Marine Freshwater Res., 21, 483–490. [CrossRef] [Google Scholar]
  • Lawton L.A., Cornish B.J.P.A. and MacDonald A.W.R., 1998. Removal of cyanobacterial toxins (microcystins) and cyanobacterial cells from drinking water using domestic water filters. Water Res., 32, 633–638. [CrossRef] [Google Scholar]
  • Li S., Zhu H., Xia Y., Yu M., Liu K., Ye Z. and Chen Y., 1959. The mass culture of unicellular green algae. Acta Hydrobiol. Sin., 4, 462–472 (in Chinese with English abstract). [Google Scholar]
  • Liu H., Xie P., Chen F.Z., Tang H.J. and Xie L.Q., 2002. Enhancement of planktonic rotifers by Microcystis aeruginosa blooms: an enclosure experiment in a shallow Eutrophic Lake. J. Freshwater Ecol., 17, 239–247. [CrossRef] [Google Scholar]
  • Liu Y.M., Chen W., Li D.H., Shen Y.W., Li G.B. and Liu Y.D., 2006. First report of aphantoxins in China – water blooms of toxigenic Aphanizomenon flos-aquae in Lake Dianchi. Ecotoxicol. Environ. Saf., 65, 84–92. [CrossRef] [PubMed] [Google Scholar]
  • Lu Z.H., Zhao B.K., Yang J.X. and Snell T.W., 2012. Effects of atrazine and carbaryl on growth and reproduction of the rotifer Brachionus calyciflorus Pallas. J. Freshwater Ecol., 27, 527–537. [CrossRef] [Google Scholar]
  • Lürling M. and van der Grinten E., 2003. Life history characteristics of Daphnia exposed to dissolved microcystin-LR and to the cyanobacterium Microcystis aeruginosa with and without microcystins. Environ. Toxicol. Chem., 22, 1281–1287. [PubMed] [Google Scholar]
  • Marcial S.H., Hagiwara A. and Snell T.W., 2005. Effect of some pesticides on reproduction of rotifer Brachionus plicatilis. Hydrobiologia, 546, 569–575. [CrossRef] [Google Scholar]
  • Matsunaga H., Harada K.I., Senma M., Ito Y., Yasuda N., Ushida S. and Kimura Y., 1999. Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan: sudden appearance of toxic cyanobacteria. Nat. Toxins, 7, 81–84. [CrossRef] [PubMed] [Google Scholar]
  • Nandini S., Picazo-Paez E.A. and Sarma S.S.S., 2007. The combined effects of heavy metals (copper and zinc), temperature and food (Chlorella vulgaris) level on the demographic characters of Moina macrocopa (Crustacea: Cladocera). J. Environ. Sci. Health Part A, 42, 1433–1442. [CrossRef] [Google Scholar]
  • Nogrady T., Wallace R.L. and Snell T.W., 1993. Morphology and internal organization. In: Nogrady T. (ed.), Rotifera, Vol. 1: Biology, Ecology and Systematics, SPB Academic Publishing, The Hague, 142 p. [Google Scholar]
  • Oliver R.L. and Ganf G.G., 2000. Freshwater blooms. In: Whitton B.A. and Potts M. (eds.), The Ecology of Cyanobacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, 149–194. [Google Scholar]
  • Oziol L. and Bouaïcha N., 2010. First evidence of estrogenic potential of the cyanobacterial heptotoxins the nodularin-R and the microcystin-LR in cultured mammalian cells. J. Hazard. Mater., 174, 610–615. [CrossRef] [PubMed] [Google Scholar]
  • Paerl H.W. and Huisman J., 2008. Blooms like it hot. Science, 320, 57–58. [CrossRef] [PubMed] [Google Scholar]
  • Paerl H.W., Fulton R.S., Moisander P.H. and Dyble J., 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J., 1, 76–113. [CrossRef] [Google Scholar]
  • Pavón-Meza E.L., Sarma S.S.S. and Nandini S., 2005. Combined effects of algal (Chlorella vulgaris) food level and temperature on the demography of Brachionus havanaensis (Rotifera): a life table study. Hydrobiologia, 546, 353–360. [CrossRef] [PubMed] [Google Scholar]
  • Pennak R.W., 1989. Freshwater Invertebrates of the United States. The Ronald-Press Co., New York. [Google Scholar]
  • Pflugmacher S., 2004. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicol., 70, 169–178. [CrossRef] [Google Scholar]
  • Porter K.G. and Orcutt J.D., 1980. Nutritional adequacy, manage ability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In: Kerfoot, W.C. (ed.), Evolution and Ecology of Zooplankton Communities, University Press of New England, New Hampshire, 268–281. [Google Scholar]
  • Pourriot R. and Snell T.W., 1983. Resting eggs of rotifers. Hydrobiologia, 104, 213–224. [CrossRef] [Google Scholar]
  • Preston B.L., Snell T.W. and Roberston T.L., 2000. Use of freshwater rotifer Brachionus calycifiorus in screening assay for potential endocrine disruptors. Environ. Toxicol. Chem., 19, 2923–2928. [CrossRef] [Google Scholar]
  • Qiu T., Xie P., Ke Z., Li L. and Guo L., 2007. In situ studies on physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms in a large Chinese lake. Toxicon, 50, 365–376. [CrossRef] [PubMed] [Google Scholar]
  • Radix P., Severin G., Schamm K.W. and Kettrup A., 2002. Reproduction disturbances of Brachionus calyciflorus (rotifer) for the screening of environmental endocrine disruptors. Chemosphere, 47, 1097–1101. [CrossRef] [PubMed] [Google Scholar]
  • Rohrlack T., Dittmann E., Henning M., Borner T. and Kohl J.G., 1999. Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol., 65, 737–739. [PubMed] [Google Scholar]
  • Sivonen K. and Jones G., 1999. Cyanobacterial toxins. In: Chorus I. and Bartram J. (eds.), Toxic Cyanobacteria in Water–a Guide to Their Public Health Consequences, Monitoring and Management, E&FN Spon, London, 41–111. [Google Scholar]
  • Sladecék V., 1983. Rotifers as indicators of water quality. Hydrobiologia, 100, 169–201. [CrossRef] [Google Scholar]
  • Snell T.W. and Carmona M.J., 1995. Comparative toxicant sensitivity of sexual and asexual reproduction in the rotifer Brachionus calyciflorus. Environ. Toxicol. Chem., 14, 415–420. [CrossRef] [Google Scholar]
  • Snell T.W. and Janssen C.R., 1995. Rotifers in ecotoxicology: a review. Hydrobiologia, 313/314, 231–247. [CrossRef] [Google Scholar]
  • Stelzer C.P., 1998. Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species? Hydrobiologia, 387/388, 349–353. [CrossRef] [Google Scholar]
  • Stephan C.E. and Rogers J.R., 1985. Advantages of using regression analysis to calculate results of chronic toxicity test. In: Bahner R.C. and Hansen D.J.H. (eds.), Aquatic Toxicology and Hazard Assessment: Eight Symposium, American Society for Testing and Materials, Philadelphia, 328–339. [CrossRef] [Google Scholar]
  • Svrcek C. and Smith D.W., 2004. Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. J. Environ. Eng. Sci., 3, 155–185. [CrossRef] [Google Scholar]
  • Tillmanns A.R., Wilson A.E., Pick F.R. and Sarnelle O., 2008. Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses. Fundam. Appl. Limnology, 171, 285–295. [CrossRef] [Google Scholar]
  • USEPA, 1985. Methods for Measuring the Acute Toxicity of Effluents to Freshwaater and Marine Organisms, In: Peltier W.H. and Weber C.I. (eds.), US Environmental Protect Agency, Washington, DC. EPA/600/4–85/013, 216 p. [Google Scholar]
  • van Apeldoorn M.E., van Egmond H.P., Speijers G.J.A. and Bakker G.J.I., 2007. Toxins of cyanobacteria. Mol. Nutr. Food Res., 51, 7–60. [CrossRef] [PubMed] [Google Scholar]
  • Vareli K., Briasoulis E., Pilidis G. and Sainis I., 2009. Molecular confirmation of Planktothrix rubescens as the cause of intense microcystins-Synthesizing cyanobacterial bloom in Lake Ziros, Greece. Harmful Algae, 8, 447–453. [CrossRef] [Google Scholar]
  • Vasconcelos V.M. and Pereira E., 2001. Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Res., 35, 1354–1357. [CrossRef] [PubMed] [Google Scholar]
  • Wen X.L., Xi Y.L., Yang Y.F., Zhang X.A. and Zhang G., 2011. Temperature is the key factor controlling population dynamics of Brachionus angularis in Lake Jinghu during summer and autumn. J. Freshwater Ecol., 26, 2277–2286. [Google Scholar]
  • WHO, 1998. Guidelines for Safe Recreational Water Environments: Coastal and Freshwaters, World Heath Organization, Geneva. [Google Scholar]
  • Wilson A.E., Sarnelle O. and Tillmanns A.R., 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta-analyses of laboratory experiments. Limnol. Oceanogr., 51, 1915–1924. [CrossRef] [Google Scholar]
  • Xi Y.L. and Feng L.K., 2004. Effects of thiophanate-methyl and glyphosate on asexual and sexual reproduction in the rotifer Brachionus calycifiorus Pallas. Bull. Environ. Contam. Toxicol., 73, 644–651. [PubMed] [Google Scholar]
  • Xi Y.L., Chu Z.X. and Xu X.P., 2007. Effect of four organochlorine pesticides on the reproduction of freshwater rotifer Brachionus calyciflorus pallas. Environ. Toxicol. Chem., 26, 1695–1699. [CrossRef] [PubMed] [Google Scholar]
  • Xie L., Xie P., Guo L., Li L., Miyabara Y. and Park H., 2005. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environ. Toxicol., 20, 293–300. [CrossRef] [PubMed] [Google Scholar]
  • Yang Z., Lü K., Chen Y. and Montagnes D.J.S., 2012. The interactive effects of ammonia and microcystin on life-history traits of the cladoceran Daphnia magna: synergistic or antagonistic? PLoS ONE, 7, e32285. [CrossRef] [PubMed] [Google Scholar]
  • Yang Z., Xiang F.H., Minter E.J.A., Lü K., Chen Y.F. and Montagnes D.J.S., 2011. The interactive effects of microcystin and nitrite on life-history parameters of the cladoceran Daphnia obtusa. J. Hazard. Mater., 190, 113–118. [CrossRef] [PubMed] [Google Scholar]
  • Ye W.J., Liu X.L., Tan J., Li D.T. and Yang H., 2009. Diversity and dynamic of microcystin-producing cyanobacteria in China's third largest lake, Lake Taihu. Harmful Algae, 8, 637–644. [CrossRef] [Google Scholar]
  • Yin X.W. and Zhao W., 2008. Studies on life history characteristics of Brachionus plicatilis O. F. Müller (Rotifera) in relation to temperature, salinity and food algae. Aquat. Ecol., 42, 165–176. [CrossRef] [Google Scholar]
  • Zar J.H., 1999. Biostatistical Analysis, Vol. 4, Prentice Hall, New Jersey, 663 p. [Google Scholar]
  • Zhang S.Y., Cheng S.P., He F., Zhuang D.H. and Wu Z.B., 2008. Studies on the toxic effects of filtered cyanobacteria culture media of two different strains (microcystin-producing and microcystin-free) of Microcystis Aeruginosa on Daphnia Magna. Acta Hydrobiol. Sin., 32, 637–642 (in Chinese with English abstract). [CrossRef] [Google Scholar]
  • Zhang X. and Geng H., 2012. Effect of Microcystis aeruginosa on the rotifer Brachionus calycifiorus at different temperatures. Bull. Environ. Contam. Toxicol., 88, 20–24. [CrossRef] [PubMed] [Google Scholar]
  • Zimba P.V., Khoo L., Gaunt P., Carmichael W.W. and Brittain S., 2001. Confirmation of catfish, Lctalurus punctatus (Rafinesque), mortality from microcystins toxins. J. Fish Dis., 24, 41–47. [CrossRef] [Google Scholar]
  • Zurawell R.W., Chen H., Burke J.M. and Prepas E.E., 2004. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health Part B Crit. Rev., 8, 1–37. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.