Open Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 47, Number 3, 2011
Page(s) 239 - 249
DOI https://doi.org/10.1051/limn/2011009
Published online 04 July 2011
  • AFNOR, 2004. Qualité de l'eau – Guide pour l'identification et le dénombrement des échantillons de diatomées benthiques de rivières, et leur interprétation. Norme NF EN ISO 14407 (October 2004), T90-357–2, 12 p. [Google Scholar]
  • Anderson M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol., 26, 32–46. [Google Scholar]
  • Anderson M.J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62, 245–253. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Battaglin W.A., Furlong E.T., Burkhardt M.R. and Peter C.J., 2000. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998. Sci. Total Environ., 248, 123–133. [CrossRef] [PubMed] [Google Scholar]
  • Boger P., Matthes B. and Schmalfuss J., 2000. Towards the primary target of chloroacetamides – new findings pave the way. Pest Manag. Sci., 56, 497–508. [CrossRef] [Google Scholar]
  • Cattaneo A., Couillard Y., Wunsam S. and Courcelles M., 2004. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Quebec, Canada). J. Paleolimnol., 32, 163–175. [CrossRef] [Google Scholar]
  • Clark G.M. and Goolsby D.A., 2000. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River. Sci. Total Environ., 248, 101–113. [CrossRef] [PubMed] [Google Scholar]
  • Coste M., Boutry S., Tison-Rosebery J. and Delmas F., 2009. Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecol. Indic., 9, 621–650. [CrossRef] [Google Scholar]
  • Debenest T., Silvestre J., Coste M., Delmas F. and Pinelli E., 2008. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities. Aquat. Toxicol., 88, 88–94. [CrossRef] [PubMed] [Google Scholar]
  • Debenest T., Pinelli E., Coste M., Silvestre J., Mazzella N., Madigou C. and Delmas F., 2009. Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Aquat. Toxicol., 93, 11–17. [CrossRef] [PubMed] [Google Scholar]
  • Debenest T., Silvestre J., Coste M. and Pinelli E., 2010. Effects of pesticides on freshwater diatoms. Rev. Environ. Contam. Toxicol., 203, 87–103. [CrossRef] [PubMed] [Google Scholar]
  • Dubois A., Lacouture L. and Feuillet C., 2010. Les pesticides dans les milieux aquatiques, Études et Documents, 26, Commissariat Général au Développement Durable, Paris. [Google Scholar]
  • European Commission, 2000. Directive 2000/60/EC of the European parliament and of the council of 23rd October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Commun., 327, 1–72. [Google Scholar]
  • Fairchild J.F., Ruessler D.S., Haverland P.S. and Carlson A.R., 1997. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch. Environ. Con. Toxicol., 32, 353–357. [CrossRef] [Google Scholar]
  • Falasco E., Bona F., Ginepro M., Hlubikova D., Hoffmann L. and Ector L., 2009. Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA, 35, 595–606. [Google Scholar]
  • Gold C., Feurtet-Mazel A., Coste M. and Boudou A., 2003. Effects of cadmium stress on periphytic diatom communities in indoor artificial streams. Freshwater Biol., 48, 316–328. [CrossRef] [Google Scholar]
  • Guillard R.R.L. and Lorenzen C.J., 1972. Yellow-green algae with chlorophyllide c. J. Phycol., 8, 10–14. [Google Scholar]
  • Hamala J.A. and Kollig H.P., 1985. The effects of atrazine on periphyton communities in controlled laboratory ecosystems. Chemosphere, 14, 1391–1408. [CrossRef] [Google Scholar]
  • Hamilton P.B., Jackson G.S., Kaushik N.K. and Solomon K.R., 1987. The impact of atrazine on lake periphyton communities, including carbon uptake dynamics using track autoradiography. Environ. Pollut., 46, 83–103. [CrossRef] [PubMed] [Google Scholar]
  • Hering D., Borja A., Carstensen J., Carvalho L., Elliott M., Feld C.K., Heiskanen A.S., Johnson R.K., Moe J., Pont D., Solheim A.L. and de Bund W.V., 2010. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci. Total Environ., 408, 4007–4019. [CrossRef] [PubMed] [Google Scholar]
  • Hill A.V., 1910. The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J. Physiol., 40 (Suppl.), iv–vii. [Google Scholar]
  • Hladik M.L., Hsiao J.J. and Roberts A.L., 2005. Are neutral chloroacetamide herbicide degradates of potential environmental concern? Analysis and occurrence in the Upper Chesapeake Bay. Environ. Sci. Technol., 39, 6561–6574. [CrossRef] [PubMed] [Google Scholar]
  • Ihaka R. and Gentleman R., 1996. R: A language for data analysis and graphics. J. Comput. Graph. Stat., 5, 299–314. [CrossRef] [Google Scholar]
  • Ivorra N., Barranguet C., Jonker M., Kraak M.H.S. and Admiraal W., 2002. Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ. Pollut., 116, 147–157. [CrossRef] [PubMed] [Google Scholar]
  • Junghans M., Backhaus T., Faust M., Scholze M. and Grimme L.H., 2003. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest. Manag. Sci., 59, 1101–1110. [CrossRef] [PubMed] [Google Scholar]
  • Kegley S.E., Hill B.R., Orme S. and Choi A.H., 2010. PAN pesticide database, Pesticide Action Network, San Francisco. [Google Scholar]
  • Kosinski R.J., 1984. The effect of terrestrial herbicides on the community structure of stream periphyton. Environ. Pollut. A, 36, 165–189. [CrossRef] [Google Scholar]
  • Krammer K. and Lange-Bertalot H., 1986–1991. Bacillariophyceae 1. Teil: Naviculaceae, 876 p.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, G. Fischer Verlag, Stuttgart, 437 p. [Google Scholar]
  • Liu H. and Xiong M., 2009. Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa. Aquat. Toxicol., 93, 100–106. [CrossRef] [PubMed] [Google Scholar]
  • Ma J. and Liang W., 2001. Acute toxicity of 12 herbicides to the green algae Chlorella pyrenoidosa and Scenedesmus obliquus. Bull. Environ. Contam. Toxicol., 67, 347–351. [PubMed] [Google Scholar]
  • Ma J., Lin F., Wang S. and Xu L., 2003. Toxicity of 21 herbicides to the green alga Scenedesmus quadricauda. Bull. Environ. Contam. Toxicol., 71, 594–601. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Martin-Jezequel V., Hildebrand M. and Brzezinski M.A., 2000. Silicon metabolism in diatoms: Implications for growth. J. Phycol., 36, 821–840. [CrossRef] [Google Scholar]
  • Mohr S., Feibicke M., Berghahn R., Schmiediche R. and Schmidt R., 2008. Response of plankton communities in freshwater pond and stream mesocosms to the herbicide metazachlor. Environ. Pollut., 152, 530–542. [CrossRef] [PubMed] [Google Scholar]
  • Morin S., Duong T.T., Dabrin A., Coynel A., Herlory O., Baudrimont M., Delmas F., Durrieu G., Schafer J., Winterton P., Blanc G. and Coste M., 2008. Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environ. Pollut., 151, 532–542. [CrossRef] [PubMed] [Google Scholar]
  • Morin S., Bottin M., Mazzella N., Macary F., Delmas F., Winterton P. and Coste M., 2009. Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): A case study in the Neste river system (South-West France). Aquat. Toxicol., 94, 28–39. [CrossRef] [PubMed] [Google Scholar]
  • Noack U., Geffke T., Balasubramanian R., Papenbrock J., Braunec M. and Scheerbaum D., 2003. Effects of the herbicide metazachlor on phytoplankton and periphyton communities in outdoor mesocosms. Acta Hydrochim. Hydrobiol., 31, 482–490. [CrossRef] [Google Scholar]
  • Osano O., Admiraal W., Klamer H.J.C., Pastor D. and Bleeker E.A.J., 2002. Comparative toxic and genotoxic effects of chloroacetanilides, formamidines and their degradation products on Vibrio fischeri and Chironomus riparius. Environ. Pollut., 119, 195–202. [CrossRef] [PubMed] [Google Scholar]
  • Pérès F., Florin D., Grollier T., Feurtet-Mazel A., Coste M., Ribeyre F., Ricard M. and Boudou A., 1996. Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms. Environ. Pollut., 94, 141–152. [CrossRef] [PubMed] [Google Scholar]
  • Pesce S., Lissalde S., Lavieille D., Margoum C., Mazzella N., Roubeix V. and Montuelle B., 2010. Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach. Aquat. Toxicol., 99, 492–499. [CrossRef] [PubMed] [Google Scholar]
  • Prygiel J., Coste M. and Bukowska J., 1999. Review of the major diatom-based techniques for the quality assessment of rivers – State of the art in Europe. In: Prygiel J., Whitton B.A. and Bukowska J. (eds.), Use of algae for monitoring rivers III, Agence de l'Eau Artois-Picardie, Douai, 224–238. [Google Scholar]
  • Ricart M., Barceló D., Geiszinger A., Guasch H., Alda M.L.D., Romaní A.M., Vidal G., Villagrasa M. and Sabater S., 2009. Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere, 76, 1392–1401. [CrossRef] [PubMed] [Google Scholar]
  • Roubeix V., Mazzella N., Delmas F. and Coste M., 2010. In situ evaluation of herbicide effects on the composition of river periphytic diatom communities in a region of intensive agriculture. Vie Milieu, 160, 233–241. [Google Scholar]
  • Schmitt-Jansen M. and Altenburger R., 2005. Toxic effects of isoproturon on periphyton communities – a microcosm study. Estuar. Coast. Shelf Sci., 62, 539–545. [CrossRef] [Google Scholar]
  • Spawn R.L., Hoagland K.D. and Siegfried B.D., 1997. Effects of alachlor on an algal community from a midwestern agricultural stream. Environ. Toxicol. Chem., 16, 785–793. [CrossRef] [Google Scholar]
  • Vallotton N., Moser D., Eggen R.I.L., Junghans M. and Chèvre N., 2008. S-metolachlor pulse exposure on the alga Scenedesmus vacuolatus: Effects during exposure and the subsequent recovery. Chemosphere, 73, 395–400. [CrossRef] [PubMed] [Google Scholar]
  • Vera M.S., Lagomarsino L., Sylvester M., Perez G.L., Rodriguez P., Mugni H., Sinistro R., Ferraro M., Bonetto C., Zagarese H. and Pizarro H., 2010. New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology, 19, 710–721. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.