Free Access
Ann. Limnol. - Int. J. Lim.
Volume 47, Number 3, 2011
Page(s) 231 - 238
Published online 09 August 2011
  • Aldous A.R., Craft C.B., Stevens C.J., Barry M.J. and Bach L.B., 2007. Soil phosphorus release from a restoration wetland, Upper Klamath Lake, Oregon. Wetlands, 27, 1025–1035. [CrossRef] [Google Scholar]
  • Andersen J.M., 1976. Ignition method for determination of total phosphorus in lake sediments. Water Res., 10, 329–331. [CrossRef] [Google Scholar]
  • Birgand F., Skaggs R.W., Chescheir G.M. and Gilliam J.W., 2007. Nitrogen removal in streams of agricultural catchments – A literature review. CRC C. R. Rev. Environ. Sci. Technol., 37, 381–487. [Google Scholar]
  • Brookes P.C., Kragt J.F., Powlson D.S. and Jenkinson D.S., 1985. Chloroform fumigation and the release of soil-nitrogen – the effects of fumigation time and temperature. Soil Biol. Biochem., 17, 831–835. [CrossRef] [Google Scholar]
  • Brunet R.C., Pinay G., Gazelle F. and Roques L., 1994. Role of the floodplain and riparian zone in suspended matter and nitrogen-retention in the Adour River, south-west France. Regul. River., 9, 55–63. [CrossRef] [Google Scholar]
  • Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley A.N. and Smith V.H., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8, 559–568. [Google Scholar]
  • Craig L.S., Palmer M.A., Richardson D.C., Filoso S., Bernhardt E.S., Bledsoe B.P., Doyle M.W., Groffman P.M., Hassett B.A., Kaushal S.S., Mayer P.M., Smith S.M. and Wilcock P.R., 2008. Stream restoration strategies for reducing river nitrogen loads. Front. Ecol. Environ., 6, 529–538. [Google Scholar]
  • Drury C.F. and Beauchamp E.G., 1991. Ammonium fixation, release, nitrification, and immobilization in high- and low-fixing soils. Soil Sci. Soc. Am. J., 55, 125–129. [CrossRef] [Google Scholar]
  • DS/EN ISO 13395, 1997. Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection. [Google Scholar]
  • DS/EN ISO 6878, 2004. Water quality – Determination of phosphorus – Ammonium molybdate spectrometric method. [Google Scholar]
  • DS/EN ISO 11732, 2005. Determination of ammonium nitrogen – Method by flow analysis (CFA and FIA) and spectrometric detection. [Google Scholar]
  • Ellermann T., Andersen H.V., Bossi R., Christensen J., Frohn L.M., Geels C., Kemp K., Løfstrøm P., Mogensen B.B. and Monies C., 2007. Atmosfærisk deposition 2006, NOVANA, Aarhus Universitet, Danmarks Miljøundersøgelser, Rapport fra DMU 645, 62 p. (in Danish). [Google Scholar]
  • European Parliament and of the Council, 2000. Establishing a framework for the Community action in the field of water policy, Directive 2000/60/EC. [Google Scholar]
  • Frederick L.R., 1956. The formation of nitrate from ammonium nitrogen in soils: 1. Effect of temperature. Soil Sci. Soc. Am. Proc., 20, 496–500. [CrossRef] [Google Scholar]
  • Fyns Amt., 2003. Odense pilot river basin, Provisional Article 5 Report pursuant to the Water Framework Directive, Fyns Amt, Fyn County, 132 p. [Google Scholar]
  • Hoffmann C.C. and Baattrup-Pedersen A., 2007. Re-establishing freshwater wetlands in Denmark. Ecol. Eng., 30, 157–166. [CrossRef] [Google Scholar]
  • Hoffmann C.C., Berg P., Dahl M., Larsen S.E., Andersen H.E. and Andersen B., 2006. Groundwater flow and transport of nutrients through a riparian meadow – Field data and modelling. J. Hydrol., 331, 315–335. [CrossRef] [Google Scholar]
  • Hoffmann C.C., Kjaergaard C., Uusi-Kämppä J., Hansen H.C.B. and Kronvang B., 2009. Phosphorus retention in riparian buffers: review of their efficiency. J. Environ. Qual., 38, 1942–1955. [CrossRef] [PubMed] [Google Scholar]
  • Jensen H.S. and Thamdrup B., 1993. Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia, 253, 47–59. [CrossRef] [Google Scholar]
  • Jensen H.S., Kristensen P., Jeppesen E. and Skytthe A., 1992. Iron-phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia, 235, 731–743. [CrossRef] [Google Scholar]
  • Johnston C.A., 1991. Sediment and nutrient retention by fresh-water wetlands – effects on surface-water quality. Crit. Rev. Environ. Contr., 21, 491–565. [Google Scholar]
  • Junk J., Bayley P.B. and Sparks R.E., 1989. The flood pulse concept and in river–floodplain systems. Proceedings of the International Large River Symposium. Can. Spec. Publ. Aquat. Sci., 106, 110–127. [Google Scholar]
  • Kronvang B., Svendsen L.M., Brookes A., Fisher K., Moller B., Ottosen O., Newson M. and Sear D., 1998. Restoration of the rivers Brede, Cole and Skerne: a joint Danish and British EU-LIFE demonstration project, III – Channel morphology, hydrodynamics and transport of sediment and nutrients. Aquat. Conserv., 8, 209–222. [CrossRef] [Google Scholar]
  • Kronvang B., Andersen I.K., Hoffmann C.C., Pedersen M.L., Ovesen N.B. and Andersen H.E., 2007. Water exchange and deposition of sediment and phosphorus during inundation of natural and restored lowland floodplains. Water Air Soil Pollut., 181, 115–121. [Google Scholar]
  • Kronvang B., Hoffmann C.C., Dröge R. and Andersen H.E., 2009. Sediment deposition and net phosphorus retention in a hydraulically restored lowland river floodplain in Denmark: combining field and laboratory experiments. Mar. Freshw. Res., 60, 638–646. [Google Scholar]
  • Loeb R., Lamers L.P.M. and Roelofs J.G.M., 2008. Prediction of phosphorus mobilisation in inundated floodplain soils. Environ. Pollut., 156, 325–331. [Google Scholar]
  • Mitsch W.J. and Jørgensen S.V., 2003. Ecological engineering and ecosystem restoration, 2nd edn., John Wiley and Sons, New York, 472 p. [Google Scholar]
  • Moss B., 2008. Water pollution by agriculture. Philos. Trans. R. Soc. B, 363, 659–666. [Google Scholar]
  • Moss T. and Monstadt J., 2008. Restoring Floodplains in Europe: Policy Contexts and Project Experiences, IWA Publishing, London, 355 p. [Google Scholar]
  • Naiman R.J. and Decamps H., 1997. The ecology of interfaces: Riparian zones. Annu. Rev. Ecol. Evol. Syst., 28, 621–658. [Google Scholar]
  • Noe G.B. and Hupp C.R., 2009. Retention of riverine sediment and nutrient loads by coastal plain floodplains. Ecosystems, 12, 728–746. [CrossRef] [Google Scholar]
  • Olde Venterink H., Vermaat J.E., Pronk M., Wiegman F., van der Lee G.E.M., van den Hoorn M.W., Higler L.W.G.B. and Verhoeven J.T.A., 2006. Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Appl. Veg. Sci., 9, 163–174. [Google Scholar]
  • Paludan C. and Jensen H.S., 1995. Sequential extraction of phosphorus in freshwater wetland and lake sediment: significance of humic acids. Wetlands, 15, 365–373. [CrossRef] [Google Scholar]
  • Petersen J.D., Rask N., Madsen H.B., Jorgensen O.T., Petersen S.E., Nielsen S.V.K., Pedersen C.B. and Jensen M.H., 2009. Odense Pilot River Basin: implementation of the EU Water Framework Directive in a shallow eutrophic estuary (Odense Fjord, Denmark) and its upstream catchment. Hydrobiologia, 629, 71–89. [CrossRef] [Google Scholar]
  • Pinay G., Black V.J., Planty-Tabacchi A.M., Gumiero B. and Decamps H., 2000. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry, 50, 163–182. [CrossRef] [Google Scholar]
  • Pinay G., Gumiero B., Tabacchi E., Gimenez O., Tabacchi-Planty A.M., Hefting M.M., Burt T.P., Black V.A., Nilsson C., Iordache V., Bureau F., Vought L., Petts G.E. and Decamps H., 2007. Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshw. Biol., 52, 252–266. [Google Scholar]
  • Psenner R., Pucko R. and Sager M., 1984. Die fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Archiv. Hydrobiol., 70, 111–155 (in German). [Google Scholar]
  • Reddy K.R. and DeLaune R.D., 2008. Biogeochemistry of Wetlands: Science and Applications, CRC Press, Boca Raton, FL, 774 p. [Google Scholar]
  • Stanford G., Frere M.H. and Schwaninger D.H., 1973. Temperature coefficient of soil nitrogen mineralization. Soil Sci., 115, 321–323. [Google Scholar]
  • Thodsen H., 2007. The influence of climate change on stream flow in Danish rivers. J. Hydrol., 333, 226–238. [Google Scholar]
  • Tockner K., Pennetzdorfer D., Reiner N., Schiemer F. and Ward J.V., 1999. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw. Biol., 41, 521–535. [CrossRef] [Google Scholar]
  • Tockner K., Malard F. and Ward J.V., 2000. An extension of the flood pulse concept. Hydrol. Process., 14, 2861–2883. [Google Scholar]
  • Tockner K. and Stanford J.A., 2002. Riverine flood plains: present state and future trends. Environ. Conserv., 29, 308–330. [Google Scholar]
  • Trehan S.P., 1996. Immobilisation of (NH4+)-N-15 in three soils by chemical and biological processes. Soil Biol. Biochem., 28, 1021–1027. [CrossRef] [Google Scholar]
  • Vejen F., 2005. Pilotprojekt: Beregning af dynamisk korrektion af nedbør på Samsø, 1989–2003, Danish Meteorological Institute, Copenhagen, Denmark, 51 p. (in Danish). [Google Scholar]
  • Vought L.B.M., Dahl J., Pedersen C.L. and Lacoursiere J.O., 1994. Nutrient retention in Riparian ecotones. Ambio, 23, 342–348. [Google Scholar]
  • Walling D.E., Owens P.N. and Leeks G.J.L., 1999. Rates of contemporary overbank sedimentation and sediment storage on the floodplains of the main channel systems of the Yorkshire Ouse and River Tweed, UK. Hydrol. Process., 13, 993–1009. [Google Scholar]
  • Ward J.V., Tockner K. and Schiemer F., 1999. Biodiversity of floodplain river ecosystems: Ecotones and connectivity. Regul. River, 15, 125–139. [Google Scholar]
  • Zar J.H., 1996. Comparing simple linear regression equations. In: Biostatistical Analysis, 3rd edn., Prentice Hall, Englewood Cliffs, NJ, 353–359. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.