Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 47, 2011
River ecosystem health assessment: the value in the management and restoration
Page(s) S73 - S89
DOI https://doi.org/10.1051/limn/2011021
Published online 08 July 2011
  • An K.-G. and Lee E.H., 2006. Ecological health assessments of Yoogu Stream using a fish community metric model. Korean J. Limnol., 39, 310–319 (in Korean with English summary). [Google Scholar]
  • An K.-G., Jung S.H. and Choi S.S., 2001a. An evaluation on health conditions of Pyong-Chang River using the index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI). Korean J. Limnol., 34, 153–165 (in Korean with English summary). [Google Scholar]
  • An K.-G., Yeom D.H. and Lee S.K., 2001b. Rapid bioassessments of Kap Stream using the index of biological integrity. Korean J. Environ. Biol., 19, 216–269 (in Korean with English summary). [Google Scholar]
  • An K.-G., Kim D.S., Kong D.S. and Kim S.D., 2004. Integrative assessments of a temperate stream based on a multimetric determination of biological integrity, physical habitat evaluations, and toxicity tests. Bull. Environ. Contam. Toxicol., 73, 471–478. [Google Scholar]
  • An K.-G., Lee J.Y., Bae D.Y., Kim J.H., Hwang S.J., Won D.H., Lee J.K. and Kim C.S., 2006. Ecological assessments of aquatic environment using multi-metric model in major nationwide stream watersheds. J. Korean Water Qual., 22, 796–804 (in Korean with English summary). [Google Scholar]
  • APHA, 2005. Standard Methods for the Examination of Water and Waste Water, 21st edn., American Public Health Association, New York, NY. [Google Scholar]
  • Bae D.Y. and An K.-G., 2006. Stream ecosystem assessments, based on a biological multimetric parameter model and water chemistry analysis. Korean J. Limnol., 39, 198–208 (in Korean with English summary). [Google Scholar]
  • Barbour M.T., Gerritsen J., Snyder B.D. and Stribling J.B., 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd edn., EPA 841-B-99-002, Office of Water, US EPA, Washington, DC. [Google Scholar]
  • Binns N.A. and Eiserman F.M., 1979. Quantification of fluvial trout habitat in Wyoming. T. Am. Fish. Soc., 108, 215–228. [Google Scholar]
  • Boon P.J., 2000. The development of integrated methods for assessing river conservation value. Hydrobiologia, 422, 413–428. [CrossRef] [Google Scholar]
  • Braak C.J.F., 1987. The analysis of vegetation–environment relationships by canonical correspondence analysis. Vegetation, 69, 69–77. [CrossRef] [Google Scholar]
  • Brookes A. and Shields F.D.Jr., 1996. River Channel Restoration: Guiding Principles for Sustainable Projects, Wiley, Chichester, 433 p. [Google Scholar]
  • Choi J.K., Byeon H.K. and Seok H.K., 2000. Studies on the dynamics of fish community in Wonju Stream. Korean J. Limnol., 33, 274–281 (in Korean with English summary). [Google Scholar]
  • Choi J.W. and An K.-G., 2007. Fish composition and trophic guild analysis as a collection of basic data for ecosystem health assessments in Yeongsan Lake. Korean J. Limnol., 40, 546–552 (in Korean with English summary). [Google Scholar]
  • Choi J.W., Kumar H.K., Han J.H. and An K.-G., 2011. The development of a regional multimetric fish model based on biological integrity in lotic ecosystems and some factors influencing the stream health. Water Air Soil Pollut., 217, 3–24. [CrossRef] [Google Scholar]
  • Crumpton W.G., Isenhart T.M. and Mitchell P.D., 1992. Nitrate and organic N analyses with second-derivative spectroscopy. Limnol. Oceanogr., 37, 907–913. [Google Scholar]
  • Desirree D.T., David L.P. and Gregory D.J., 2006. Development and application of a bioindicator for benthic habitat enhancement in the North Carolina Piedmont. Ecol. Eng., 27, 228–241. [Google Scholar]
  • DIN 38410, 1990. Biological-ecological analysis of water (group M); determination of the saprobic index (M2). German standard methods for the examination of water, Part 2, Waste water and sludge, 10 p. [Google Scholar]
  • Drake M.T. and Pereira D.L., 2002. Development of a fish-based index of biotic integrity for small inland lakes in Central Minnesota. N. Am. J. Fish. Manage., 22, 1105–1123. [Google Scholar]
  • European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. Official Journal, L327, 72 p. [Google Scholar]
  • Fore L.S., Karr J.R. and Conquest L.L., 1993. Statistical properties of an index of biological integrity used to evaluate water resources. Can. J. Fish. Aquat. Sci., 51, 1077–1087. [Google Scholar]
  • Gore J.A., 1985. The Restoration of Rivers and Streams, Butterworth, Stoneham, 280 p. [Google Scholar]
  • Han J.H., Bae D.Y. and An K.-G., 2007. Ecosystem health assessments of Changwon Stream as a preliminary diagnosis for aquatic ecosystem restoration. Korean J. Limnol., 40, 527–536. [Google Scholar]
  • Hughes R.M., Heiskary S.A., Mathews W.J. and Yoder C.O., 1994. Use of ecoregions in biological monitoring. In: Loeb S.L. and Spacie A. (eds.), Biological Monitoring of Aquatic Systems, Lewis, Chelsea, 125–151. [Google Scholar]
  • Hugueny B.S., Camara B., Samoura B. and Magassouba M., 1996. Applying an index of biotic integrity based on communities in a West African river. Hydrobiologia, 331, 71–78. [CrossRef] [Google Scholar]
  • Hwang S.J., Kim N.Y., Won D.H., An K.-G., Lee J.K. and Kim C.S., 2006. Biological assessment of water quality by using epilithic diatoms in major river systems (Geum, Youngsan, Seomjin River). J. Korean Water Qual., 22, 784–795 (in Korean with English summary). [Google Scholar]
  • Karr J.R., 1981. Assessment of biotic integrity using fish communities. Fisheries, 6, 21–27. [CrossRef] [Google Scholar]
  • Karr J.R. and Dionne M., 1991. Designing surveys to assess biological integrity in lakes and reservoirs. In: Biological Criteria Research and Regulation-Proceedings of a Symposium, EP-440/5-91-005, US EPA, Office of Waters, Washington, DC, 62–72. [Google Scholar]
  • Karr J.R., Heidinger R.C. and Helmer E.H., 1985a. Effects of chlorine and ammonia from wastewater treatment facilities on biotic integrity. J. Water Pollut. Con. F., 57, 912–915. [Google Scholar]
  • Karr J.R., Toth L.A. and Dudley D.R., 1985b. Fish communities of midwestern rivers: a history of degradation. BioScience, 35, 90–95. [CrossRef] [Google Scholar]
  • Karr J.R., Fausch K.D., Angermeier P.L., Yant P.R. and Schlosser I.J., 1986. Assessment of biological integrity in running waters: a method and its rationale, Special publication 5, Illinois Natural History Survey, Champaign, IL, 28 p. [Google Scholar]
  • Kelly M.G., Cazaubon A., Coring E., Dell'Uomo A., Ector L., Goldsmith B., Guasch H., Hurlimann J., Jarlman A., Kawecka B., Kwandrans J., Laugaste R., Lindstrom E.-A., Leitao M., Marvan P., Padisak J., Pipp E., Prygiel J., Rott E., Sabater S., van Dam H. and Vizinet J., 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J. Phycol., 10, 215–224. [Google Scholar]
  • Kelly M.G. and Whitton B.A., 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. J. Appl. Phycol., 7, 433–444. [Google Scholar]
  • Kim I.S. and Park J.Y., 2002. Freshwater fishes of Korea, Kyohaksa, Seoul, 465 p. (in Korean). [Google Scholar]
  • Kleynhans C.J., 1999. The development of a fish index to assess the biological integrity of South African rivers. Water SA, 25, 265–278. [Google Scholar]
  • Koizumi N. and Matsumiya Y., 1997. Assessment of stream fish habitat based on index of biotic integrity. Bull. Jpn. Soc. Fish. Oceanogr., 61, 144–156. [Google Scholar]
  • Kwon Y.S. and An K.-G., 2006. Biological stream health and physico-chemical characteristics in the Keum-Ho River watershed. Korean J. Limnol., 39, 145–156 (in Korean with English summary). [Google Scholar]
  • Lang C. and Reymond O., 1995. An improved index of environmental quality for Swiss rivers based on benthic invertebrates. Aquat. Sci., 57, 172–180. [Google Scholar]
  • Lang C., l'Eplattenier G. and Reymond O., 1989. Water quality in rivers of Western Switzerland: application of an adaptable index based on benthic invertebrates. Aquat. Sci., 51, 224–234. [Google Scholar]
  • Lee C.L., 2001. Ichthyofauna and fish community from the Gap Stream water system, Korea. Korean J. Environ. Biol., 19, 292–301. [Google Scholar]
  • Lee J.H. and An K.-G., 2007. Seasonal dynamics of fish fauna and compositions in the Gap Stream along with conventional water quality. Korean J. Limnol., 40, 503–510. [Google Scholar]
  • Lee J.H. and An K.-G., 2010. Analysis of various ecological parameters from molecular to community level for ecological health assessments. Korean J. Limnol., 43, 24–34 (in Korean with English summary). [Google Scholar]
  • Lee W.O. and No S.Y., 2006. Freshwater fishes of Korea based on characteristics: illustrated book, Jisungsa, Seoul, 432 p. (in Korean with English summary). [Google Scholar]
  • Legendre P. and Legendre L., 1998. Numerical ecology (developments in environmental modelling), 2nd English edn., Elsevier, Amsterdam. [Google Scholar]
  • Leidy R.A. and Fiedler P.L., 1985. Human disturbance and patterns of fish species diversity in the San Francisco Bay Drainage. Biol. Conserv., 33, 247–267. [CrossRef] [Google Scholar]
  • Limburg K.E. and Schmidt R.E., 1990. Patterns of fish spawning in Hudson River tributaries: response to an urban gradient. Ecology, 71, 1231–1245. [CrossRef] [Google Scholar]
  • Lyons J., Navarro-Perez S., Cochran P.A., Santana E. and Guzman-Arroyo M., 1995. Index of biotic integrity based on fish assemblages for the conservation of streams and rivers in west-central Mexico. Conserv. Biol., 9, 569–584. [Google Scholar]
  • Maezono Y. and Miyashita T., 2004. Impact of exotic fish removal on native communities in farm ponds. Ecol. Res., 19, 263–267. [Google Scholar]
  • McCune B. and Mefford M.J., 1999. PC-ORD. Multivariate analysis of ecological data, Version 4.0, MjM Software, Gleneden Beach, OR. [Google Scholar]
  • MOE, 2000. Standard methods for the examination of water quality contamination, 7th edn., Gwacheon, Korea, 435 p. (in Korean). [Google Scholar]
  • MOE/NIER, 2006. Researches for integrative assessment methodology of aquatic environments (III): development of aquatic ecosystem health assessment and evaluation system, The Ministry of Environment/National Institute of Environmental Research (NIER), Incheon, Korea (in Korean). [Google Scholar]
  • MOE/NIER, 2008. The survey and evaluation of aquatic ecosystem health in Korea, The Ministry of Environment/National Institute of Environmental Research, Incheon, Korea (in Korean with English summary). [Google Scholar]
  • Morley S.A. and Karr J.R., 2002. Assessing and restoring the health of urban streams in the Puget Sound basin. Conserv. Biol., 16, 1498–1509. [Google Scholar]
  • Nam M.M., 1996. Present status of Korean freshwater fish. In: 1996 Symposium of Korean Journal of Limnology Proc., 31–45 (in Korean). [Google Scholar]
  • Nurnberg G.K., 1996. Trophic state of clear and colored, soft- and hard-water lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reservoir Manage., 12, 432–447. [Google Scholar]
  • Ohio EPA, 1989. Biological Criteria for the Protection of Aquatic Life (Vol. III): Standardized Biological Field Sampling and Laboratory Method for Assessing Fish and Macroinvertebrate Communities, Columbus, OH. [Google Scholar]
  • Olguin H.G., Salibian A. and Puig A., 2000. Comparative sensitivity of Scenedesmus acutus and Chlorella pyrenoidosa as sentinel organisms for aquatic ecotoxicity assessment: studies on a highly polluted urban river. Environ. Toxicol., 15, 14–22. [Google Scholar]
  • Plafkin J.L., Barbour M.T., Porter K.D., Gross S.K. and Hughes R.M., 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrate and fish, EPA/444/4-89-001, Office of water regulations and standards, US EPA, Washington, DC. [Google Scholar]
  • Prepas E.E. and Rigler F.A. 1982. Improvements in qualifying the phosphorus concentration in lake water. Can. J. Fish. Aquat. Sci., 39, 822–829. [CrossRef] [Google Scholar]
  • Rankin E.T. and Yoder C.O., 1999. Adjustments to the index of biotic integrity: a summary of Ohio experiences and some suggested modifications. In: Simon T.P. (ed.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities, CRC Press, Boca Raton, FL, 672 p. [Google Scholar]
  • Raven P.J., Holmes N.T.H., Dawson F.H., Fox P.J.A., Everard M., Fozzard I.R. and Rowen K.J., 1998. River Habitat Quality: The Physical Character of Rivers and Streams in the UK and Isle of Man, Environment Agency, Bristol. [Google Scholar]
  • Rossano E.M., 1996. Diagnosis of Stream Environments with Index of Biological Integrity, Sankaido Publishers, Tokyo. [Google Scholar]
  • Sanders R.E., Miltner R.J., Yoder C.O. and Rankin E.T., 1999. The use of external deformities, erosion, lesions, tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: a case study of seven Ohio streams. In: Simon T.P. (eds.), Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities, CRC Press, Boca Raton, FL, 672 p. [Google Scholar]
  • Soto-Galera E., Díaz-Pardo E., López-López E. and Lyons J., 1998. Fish indicator of environmental quality in the Río Lerna Basin, México. Aquat. Ecosys. Health Manage., 1, 267–276. [Google Scholar]
  • SPSS, 2004. SPSS 12.0 KO for Windows, Apache Software Foundation, Chicago, IL. [Google Scholar]
  • Strahler A.N., 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union, 38, 913–920. [Google Scholar]
  • US EPA, 1993. Fish Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. EPA 600-R-92-111. Environmental Monitoring Systems Laboratory – Cincinnati office of Modeling, Monitoring Systems, and Quality Assurance Office of Research Development, US EPA, Cincinnati, OH. [Google Scholar]
  • US EPA, 1994. Environmental monitoring and assessment program: integrated quality assurance project plan for the Surface Waters Resource Group. 1994 activities, Rev.2.00. EPA 600/X-91/080, US EPA, Las Vegas, NV. [Google Scholar]
  • US EPA, 1998. Lake and reservoir bioassessment and biocriteria technical guidance document, EP-841-B-98-007, US EPA, Office of Water, Washington, DC. [Google Scholar]
  • US EPA, 2002. Biological Assessments and Criteria, EPA 822-F-02-006, US EPA, Office of Water, Washington, DC. [Google Scholar]
  • Walton B.M., Salling M., Wyles J. and Wolin J., 2007. Biological integrity in urban streams: toward resolving multiple dimensions of urbanization. Landscape Urban Plan., 79, 110–123. [Google Scholar]
  • Winget R.N. and Mangum F.A., 1979. Biotic condition index: integrated biological, physical, and chemical stream parameters for management, Forest Service, Intermountain region, U.S. Department of Agriculture, Ogden, UT. [Google Scholar]
  • Won D.H., Jun Y.C., Kwon S.J., Hwang S.J., An K.-G. and Lee J.K., 2006. Development of Korean saprobic index using benthic macroinvertebrates and its application to biological stream environment assessment. J. Korean Water Qual., 22, 768–783 (in Korean with English summary). [Google Scholar]
  • Yeom D.H., An K.-G., Hong Y.P. and Lee S.K., 2000. Assessment of an index of biological integrity (IBI) using fish assemblages in Keum-Ho River, Korea. Korean J. Environ. Biol., 18, 215–226 (in Korean with English summary). [Google Scholar]
  • Yoder C.O., 1991. The Integrated Biosurvey as a Tool for Evaluation of Aquatic Life Use Attainment and Impairment in Ohio Surface Waters, EPA/440/5-91/005, US EPA, Washington, DC, 110–122. [Google Scholar]
  • Zhu D. and Chang J., 2008. Annual variations of biotic integrity in the upper Yangtze River using an adapted index of biotic integrity (IBI). Ecol. Indic., 8, 564–572. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.