Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 47, 2011
River ecosystem health assessment: the value in the management and restoration
Page(s) S91 - S105
DOI https://doi.org/10.1051/limn/2011022
Published online 08 July 2011
  • Allan J.D. and Castillo M.M., 2007. Stream Ecology: Structure and Function of Running Waters, 2nd edn., Kluwer Academic Publishers, Boston, 436 p. [Google Scholar]
  • Allan J.D., Erickson D.L. and Fay J., 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biol., 37, 149–161. [CrossRef] [Google Scholar]
  • Allen A.P., Whittier T.R., Larsen D.P., Kaufmann P.R., O'Connor R.J., Hughes R.M., Stemberger R.S., Dixit S.S., Brinkhurst R.O., Herlihy A.T. and Paulsen S.G., 1999. Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Can. J. Fish. Aquat. Sci., 56, 2029–2040. [CrossRef] [Google Scholar]
  • American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), 2005. Standard Methods for the Examination of Water and Wastewater: Contennial Edition (Standard Methods for the Examination of Water and Wastewater), 21th edn., American Public Health Association, Washington, DC. [Google Scholar]
  • An K.G. and Lee E.H., 2006. Ecological health assessments of Yoogu stream using a fish community metric model. Korean J. Limnol., 39, 310–319. [Google Scholar]
  • Angermeier P.L. and Schlosser I.J., 1989. Species–area relationship for stream fishes. Ecology, 70, 1450–1462. [CrossRef] [Google Scholar]
  • Armitage P.D., Moss D., Wright J.F. and Furse M.T., 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running water sites. Water Res., 17, 333–347. [CrossRef] [Google Scholar]
  • Barbour M.T., Gerritsen J., Snyder B.D. and Stribling J.B., 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Algal, Benthic Macroinvertebrates, and Fish, 2nd edn., EPA 841-B-99-002, U.S. Environmental Protection Agency, Office of Water, Washington, DC. [Google Scholar]
  • Beyer J., 1996. Fish biomarkers in marine pollution monitoring; evaluation and validation in laboratory and field studies, Academic Thesis, University of Bergen, Norway. [Google Scholar]
  • Black R.W., Munn M.D. and Plotnikoff R.W., 2004. Using macroinvertebrates to identify biota- and cover optima at multiple scales in the Pacific Northwest, USA. J. N. Am. Benthol. Soc., 23, 340–362. [CrossRef] [Google Scholar]
  • Breiman L., 2001. Random forests. Mach. Learn., 45, 5–32. [CrossRef] [Google Scholar]
  • Carter J.L., Fend S.V. and Kennelly S.S., 1996. The relationships among three habitat scales and stream benthic invertebrate community structure. Freshwater Biol., 35, 109–124. [CrossRef] [Google Scholar]
  • DIN 38410, 1990. German standard methods for the examination of water, waste water and sludge: Biological-ecological examination of water (group M): Procedure for the determination of the saprobic index on the basis of benthic communities (M2), Deutsches Institut für Normung E.V., Berlin, 10 p. [Google Scholar]
  • Duong T.T., Feirtet-Mazel A., Coste M., Dang D.K. and Boudou A., 2007. Dynamics of diatom colonization process in some rivers influenced by urban pollution. Ecol. Indic., 7, 839–851. [CrossRef] [Google Scholar]
  • European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. Off. J. Eur. Comm., L327, 1–72. [Google Scholar]
  • Flinders C.A., Horwitz R.J. and Belton T., 2008. Relationship of fish and macroinvertebrate communities in the mid-Atlantic uplands: Implications for integrated assessments. Ecol. Indic., 8, 588–598. [CrossRef] [Google Scholar]
  • Frissell C.A., Liss W.J., Warren C.E. and Hurley M.D., 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ. Manage., 10, 199–214. [CrossRef] [Google Scholar]
  • Gorman O.T. and Karr J.R., 1978. Habitat structure and stream fish communities. Ecology, 59, 507–515. [CrossRef] [Google Scholar]
  • Gregory S.V., Swanson F.J. and Mckee W.A., 1991. An ecosystem perspective of riparian zones. BioScience, 41, 540–551. [CrossRef] [Google Scholar]
  • Grenouillet G., Broe S., Tudesque L., Lek S., Baraillé Y. and Loot G., 2007. Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient. Divers. Distrib., 14, 592–603. [CrossRef] [Google Scholar]
  • Griffith M.B., Hillb B.H., McCormick F.H., Kaufmannd P.R., Herlihye A.T. and Sellef A.R., 2005. Comparative application of indices of biotic integrity based on periphyton, macroinvertebrates, and fish to southern Rocky Mountain streams. Ecol. Indic., 5, 117–136. [CrossRef] [Google Scholar]
  • Heino J., Paavola R., Virtanen R. and Muotka T., 2005. Searching for biodiversity indicators in running waters: do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodivers. Conserv., 14, 415–428. [CrossRef] [Google Scholar]
  • Hering D., Johnson R.K., Kramm S., Schmutz S., Szoszkiewicz K. and Verdonschot P.F.M., 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biol., 51, 1757–1785. [CrossRef] [Google Scholar]
  • Infante D.M., Allan J.D., Linke S. and Norris R.H., 2009. Relationship of fish and macroinvertebrate assemblages to environmental factors: implications for community concordance. Hydrobiologia, 623, 87–103. [CrossRef] [Google Scholar]
  • Jain A.K. and Dubes R.C., 1988. Algorithms for Clustering Data, Prentice Hall, Englewood Cliffs, NJ, 304 p. [Google Scholar]
  • Johnson R.K., Furse M.T., Hering D. and Sandin L., 2007. Ecological relationships between stream communities and spatial scale: implications for designing catchment level monitoring programmes. Freshwater Biol., 52, 939–958. [CrossRef] [Google Scholar]
  • Justus B.G., Petersen J.C., Femmer S.R., Davis J.V. and Wallace J.E., 2010. A comparison of algal, macroinvertebrate, and fish assemblage indices for assessing low-level nutrient enrichment in wadeable Ozark streams. Ecol. Indic., 10, 627–638. [CrossRef] [Google Scholar]
  • Karr J.R., 1981. Assessment of biotic integrity using fish communities. Fisheries, 66, 21–71. [CrossRef] [Google Scholar]
  • Kelly M.G. and Whitton B.A., 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. J. Appl. Phycol., 7, 433–444. [CrossRef] [Google Scholar]
  • Kohonen T., 2001. Self-Organizing Maps, 3rd edn., Springer, Berlin, 501 p. [Google Scholar]
  • Lenat D.R. and Crawford J.K., 1994. Effects of land use on water quality and aquatic biota of three North Carolina Piedmon streams. Hydrobiologia, 294, 185–199. [CrossRef] [Google Scholar]
  • Liaw A. and Wiener M., 2002. Classification and regression by randomForest. R News, 2, 18–22. [Google Scholar]
  • Melo A.S. and Froehlich C.G., 2001. Macroinvertebrates in neotropical streams: richness patterns along a catchment and assemblage structure between 2 seasons. J. N. Am. Benthol. Soc., 20, 1–16. [CrossRef] [Google Scholar]
  • MOE/NIER, 2008. The survey and evaluation of aquatic ecosystem health in Korea. The Ministry of Environment/National Institute of Environmental Research, Incheon, Korea (in Korean with English summary). [Google Scholar]
  • Paavola R., Muotka T., Virtanen R., Heino J. and Kreivi P., 2003. Are biological classifications of headwater streams concordant across multiple taxonomic groups? Freshwater Biol., 48, 1912–1923. [CrossRef] [Google Scholar]
  • Paavola R., Muotka T., Virtanen R., Heino J., Jackson D. and Mäki-Petäys A., 2006. Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecol. Appl., 16, 368–379. [CrossRef] [PubMed] [Google Scholar]
  • Park Y.S., Chang J., Lek S., Cao W. and Brosse S., 2003. Conservation strategies for endemic fish species threatened by the Three Gorges Dam. Conserv. Biol., 17, 1748–1785. [CrossRef] [Google Scholar]
  • Park Y.-S., Song M.-Y., Park Y.-C., Oh K.-H., Cho E. and Chon T.-S., 2007. Community patterns of benthic macroinvertebrates collected on the national scale in Korea. Ecol. Model., 203, 26–33. [CrossRef] [Google Scholar]
  • Poff N.L.R., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. N. Am. Benthol. Soc., 16, 391–409. [CrossRef] [Google Scholar]
  • Poff N.L.R. and Allan J.D., 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology, 76, 606–627. [CrossRef] [Google Scholar]
  • Poff N.L.R. and Ward J.V., 1990. Physical habitat template of lotic systems: Recovery in the context of historical pattern of spatiotemporal heterogeneity. Environ. Manage., 14, 629–645. [CrossRef] [Google Scholar]
  • Quinn J.M., Steele G.L., Hickey C.W. and Vickers M.L., 1997. Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. N. Z. J. Mar. Freshwater Res., 28, 391–397. [CrossRef] [Google Scholar]
  • Richards C., Haro R.J., Johnson L.B. and Host G.E., 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biol., 37, 219–230. [CrossRef] [Google Scholar]
  • Rott E., 1991. Methodological aspects and perspectives in the use of periphyton for monitoring and protecting rivers. In: Whitton B.A., Rott E. and Friedrich G. (eds.), Use of Algae for Monitoring Rivers, Institut für Botanik, University of Innsbruck, Austria, 9–16. [Google Scholar]
  • Sponseller R.A., Benfield E.F. and Valett H.M., 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biol., 46, 1409–1424. [CrossRef] [Google Scholar]
  • StatSoft Inc., 2004. STATISTICA (data analysis software system), version 7. www.statsoft.com. [Google Scholar]
  • Stevenson R.J. and Pan Y., 1999. Assessing ecological conditions in rivers and streams with diatoms. In: Stoermer E.F. and Smol J.P. (eds.), The Diatoms: Applications to the Environmental and Earth Sciences, Cambridge University Press, Cambridge, UK, 11–40. [Google Scholar]
  • Tang T., Cai Q. and Liu J., 2006. Using epilithic diatom communities to assess ecological condition of Xiangxi River system. Environ. Monit. Assess., 112, 347–361. [CrossRef] [PubMed] [Google Scholar]
  • Tonn W.M., Magnuson M.R. and Toivonen J., 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Am. Nat., 136, 345–375. [CrossRef] [Google Scholar]
  • Townsend C.R., 1996. Concepts in river ecology: pattern and process in the catchment hierarchy. Arch. Hydrobiol. Suppl., 113, 3–21. [Google Scholar]
  • Townsend C.R., 2003. Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conserv. Biol., 17, 1, 38–47. [CrossRef] [Google Scholar]
  • Townsend C.R. and Hildrew A.G., 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biol., 31, 265–275. [CrossRef] [Google Scholar]
  • Ultsch A., 1993. Self-organizing neural networks for visualization and classification. In: Opitz B., Lausen O. and Klar R. (eds.), Information and Classification, Springer-Verlag, Berlin, 307–313. [Google Scholar]
  • US EPA, 2002. Biological Assessments and Criteria Crucial Components of Water Quality Programs, U.S. Environmental Protection Agency, Office of Water, EPA 822-F-02-006, Washington, DC. [Google Scholar]
  • Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. and Cushing C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci., 37, 130–137. [CrossRef] [Google Scholar]
  • Walley W.J. and Hawkes H.A., 1997. A computer-based development of the Biological Monitoring Working Party score system incorporating abundance rating, site type and indicator value. Water Res., 31, 201–210. [CrossRef] [Google Scholar]
  • Watanabe T., Asai K. and Houki A., 1986. Numerical estimation of organic pollution of flowing water by using the epilithic diatom assemblage – Diatom Assemblage Index (DAIpo). Sci. Total Environ., 55, 209–218. [CrossRef] [Google Scholar]
  • Won D.H., Jun Y.C., Kwon S.J., Hwang S.J., Ahn K.G. and Lee J.W., 2006. Development of Korean saprobic index using benthic macroinvertebrates and its application to biological stream environment assessment. J. Korean Soc. Water Qual., 22, 768–783 (in Korean with English summary). [Google Scholar]
  • Zelinka M. and Marvan P., 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fließender Gewässer. Arch. Hydrobiologia, 57, 389–407. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.