Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 46, Number 2, 2010
Page(s) 93 - 100
DOI https://doi.org/10.1051/limn/2010013
Published online 16 June 2010
  • Cao Y., Williams W.P. and Bark A.W., 1997. Effects of sample size (replicate number) on similarity measures in river benthic Aufwuchs community analysis. Water Environ. Res., 69, 107–114. [CrossRef] [Google Scholar]
  • Cao Y., Larsen D.P. and Hughes R.M., 2001. Evaluating sampling sufficiency in fish assemblage surveys: a similarity-based approach. Can. J. Fish. Aquat. Sci., 58, 1782–1793. [CrossRef] [Google Scholar]
  • Cao Y., Larsen D.P., Hughes R.M., Angermeier P.L. and Patton T.M., 2002. Sampling effort affects multivariate comparisons of stream assemblages. J. N. Am. Benthol. Soc., 21, 701–714. [CrossRef] [Google Scholar]
  • Cao Y., Hawkins C.P. and Vinson M.R., 2003. Measuring and controlling data quality in biological assemblage surveys with special reference to stream benthic macroinvertebrates. Freshwater Biol., 48, 1898–1911. [CrossRef] [Google Scholar]
  • Carter J.L. and Resh V.H., 2001. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. J. N. Am. Benthol. Soc., 20, 658–682. [Google Scholar]
  • Chao A., Chazdon R.L., Colwell R.K. and Shen T., 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett., 8, 148–159. [Google Scholar]
  • Chazdon R.L., Colwell R.K., Denslow J.S. and Guariguata M.R., 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: Dallmeier F. and Comiskey A. (eds.), Forest biodiversity research, monitoring and modeling: Conceptual background and Old World case studies, Parthenon Publishing, Paris, 285–309. [Google Scholar]
  • Doberstein C.P., Karr J.R. and Conquest L.L., 2000. The effect of fixed-count subsampling on macroinvertebrate biomonitoring in small streams. Freshwater Biol., 44, 355–371. [Google Scholar]
  • Faith D.P., Minchin P.R. and Belbin L., 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio, 69, 57–68. [CrossRef] [Google Scholar]
  • Gotelli N.J. and Colwell R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett., 4, 379–391. [Google Scholar]
  • Hering D., Moog O., Sandin L. and Verdonschot P.F.M., 2004. Overview and application of the AQEM assessment system. Hydrobiologia, 516, 1–20. [CrossRef] [Google Scholar]
  • Hughes R.M. and Herlihy A.T., 2007. Electrofishing distance needed to estimate consistent index of biotic integrity (IBI) scores in raftable Oregon Rivers. T. Am. Fish. Soc., 136, 135–141. [CrossRef] [Google Scholar]
  • Hughes R.M. and Peck D.V., 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. J. N. Am. Benthol. Soc., 27, 837–859. [Google Scholar]
  • Kanno Y., Vokoun J.C., Dauwalter D.C., Hughes R.M., Herlihy A.T., Maret T.R. and Patton T.M., 2009. Influence of rare species on electrofishing distance when estimating species richness of stream and river reaches. T. Am. Fish. Soc., 138, 1240–1251. [CrossRef] [Google Scholar]
  • Kennard M.J., Pusey B.J., Harch B.D., Dore E. and Arthington A.H., 2006. Estimating local stream fish assemblage attributes: sampling effort and efficiency at two spatial scales. Mar. Freshwater Res., 57, 635–653. [CrossRef] [Google Scholar]
  • Kronberg I., 1987. Accuracy of species and abundance minimal areas determined by similarity area curves. Mar. Biol., 96, 555–561. [CrossRef] [Google Scholar]
  • Lake P.S., Schreiber E.S.G., Milne B.J. and Pearson R.G., 1994. Species richness in streams: patterns over time, with stream size and with latitude. Verh. Internat. Verein. Theor. Angew. Limnol., 25, 1822–1826. [Google Scholar]
  • Legendre P. and Legendre L., 1998. Numerical Ecology, Second Edition, Elsevier Scientific, Amsterdam, 853 p. [Google Scholar]
  • Li J., Herlihy A., Gerth W., Kaufmann P., Gregory S., Urquhart S. and Larsen D.P., 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biol., 46, 87–97. [Google Scholar]
  • Lloyd M., Inger R.F. and King F.W., 1968. On the diversity of reptile and amphibian species in a Bornean rain forest. Am. Nat., 102, 497–515. [CrossRef] [Google Scholar]
  • Lorenz A., Kirchner L. and Hering D., 2004. Electronic subsampling of macrobenthic samples: how many individuals are needed for a valid assessment result? Hydrobiologia, 516, 299–312. [CrossRef] [Google Scholar]
  • Magurran A.E., 2004. Measuring Biological Diversity, Second Edition, Blackwell Science Ltd, Oxford, 260 p. [Google Scholar]
  • Maret T.R., Ott D.S. and Herlihy A.T., 2007. Electrofishing effort required to estimate biotic condition in southern Idaho rivers. N. Am. J. Fish. Manage., 27, 1041–1052. [CrossRef] [Google Scholar]
  • Melo A.S., 2004. A critic of the use of jackknife and related non-parametric techniques to estimate species richness in assemblages. Comm. Ecol., 5, 149–157. [Google Scholar]
  • Melo A.S., 2005. Effects of taxonomic and numeric resolution on the ability to detect ecological patterns at a local scale using stream macroinvertebrates. Arch. Hydrobiol., 164, 309–323. [CrossRef] [Google Scholar]
  • Melo A.S. and Froehlich C.G., 2001a. Macroinvertebrates in Neotropical streams: richness patterns along a catchment and assemblage structure between 2 seasons. J. N. Am. Benthol. Soc., 20, 1–16. [CrossRef] [Google Scholar]
  • Melo A.S. and Froehlich C.G., 2001b. Evaluation of methods for estimating macroinvertebrate species richness using individual stones in tropical streams. Freshwater Biol., 46, 711–721. [Google Scholar]
  • Melo A.S. and Froehlich C.G., 2004. Substrate stability in streams: effects of stream size, particle size, and rainfall on frequency of movement and burial of particles. Acta Limnol. Bras., 16, 381–390. [Google Scholar]
  • Melo A.S., Bini L.M. and Carvalho P., 2006. Brazilian articles in international journals on Limnology. Scientometrics, 67, 187–199. [CrossRef] [Google Scholar]
  • Morellato L.P.C., 1992. História Natural da Serra do Japi, Editora da Unicamp/Fapesp, Campinas, Brazil. [Google Scholar]
  • Resh V.H. and Jackson J.K., 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: Rosenberg D.M. and Resh V.H. (eds.), Freshwater Biomonitoring and Benthic Macroinvertebrates, Chapman and Hall, New York, 195–233. [Google Scholar]
  • Schleier U. and van Bernem K.H., 1998. Statistical methods to determine sample size for the estimation of species richness and species' abundances in benthic communities. Arch. Fish. Mar. Res., 46, 205–223. [Google Scholar]
  • Schmera D. and Eros T., 2006. Estimating sample representativeness in a survey of stream caddisfly fauna. Ann. Limnol. - Int. J. Lim., 42, 181–187. [CrossRef] [EDP Sciences] [Google Scholar]
  • Stout J. and Vandermeer J., 1975. Comparison of species richness for stream-inhabiting insects in tropical and mid-latitude streams. Am. Nat., 109, 263–280. [CrossRef] [Google Scholar]
  • The R Development Core Team, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org. [Google Scholar]
  • Wantzen K.M., Ramírez A. and Winemiller K.O., 2006. New vistas in Neotropical stream ecology: Introduction to the special volume. J. N. Am. Benthol. Soc., 25, 61–65. [CrossRef] [Google Scholar]
  • Weinberg S., 1978. Minimal area problem in invertebrate communities of Mediterranean rocky substrata. Mar. Biol., 49, 33–40. [CrossRef] [Google Scholar]
  • Wolda H., 1981. Similarity indexes, sample-size and diversity. Oecologia, 50, 296–302. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.