Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 4, 2009
Page(s) 209 - 218
DOI https://doi.org/10.1051/limn/2009024
Published online 17 October 2009
  • Adams J.M. and Woodward F.I., 1989. Patterns in tree species richness as a test of the glacial extinction hypothesis. Nature, 339, 699–701. [CrossRef] [Google Scholar]
  • Allan J.D., 1995. Stream ecology: structure and function of running waters, Chapman and Hall, London, UK, 400 p. [Google Scholar]
  • Almeida-Neto M., Machado G., Pinto-da-Rocha R. and Giaretta A.A., 2006. Harvestman (Arachnida: Opiliones) species distribution along three Neotropical elevational gradients: an alternative rescue effect to explain Rapoport's rule? J. Biogeogr., 33, 361–375. [Google Scholar]
  • Banarescu P., 1990. Zoogeography of fresh waters. General distribution and dispersal of freshwater animals, AULA Verlag, Wiesbaden, Germany. [Google Scholar]
  • Beketov M.A., 2004a. New data on mayflies (Ephemeroptera) of South-West Siberia. Euroas. Entomol. J., 3, 25–27. [Google Scholar]
  • Beketov M.A., 2004b. Different sensitivity of mayflies (Insecta, Ephemeroptera) to ammonia, nitrite and nitrate: linkage between experimental and observational data. Hydrobiologia, 528, 209–216. [CrossRef] [Google Scholar]
  • Beketov M.A., 2005a. Species composition of stream insects of northeastern Altai: mayflies, caddisflies, and stoneflies (Ephemeroptera, Plecoptera, and Trichoptera). Euroas. Entomol. J., 4, 101–105. [Google Scholar]
  • Beketov M.A., 2005b. Mayflies, stoneflies, and caddisflies (Ephemeroptera, Plecoptera, and Trichoptera) of water streams of Sema river basin, Altai Mountains. In: Kryukov V.Yu. and Beketov M.A. (eds.), Proceedings of the conference “Autumn Zoological Sessions 2005”, NGPU, Novosibisrk, Russia, 47–50. [Google Scholar]
  • Beketov M.A., 2006. Caddisflies (Trichoptera) of south-western Siberia: new zoogeographical records, aquatic habitat preferences and flight periods. Braueria, 33, 13–16. [Google Scholar]
  • Beketov M.A., 2007. New records of mayflies and stoneflies (Ephemeroptera, Plecoptera) in South-West Siberia. Euroas. Entomol. J., 6, 387–388. [Google Scholar]
  • Beketov M.A., 2008a. Community structure of Ephemeroptera in Siberian streams. Entomol. Sci., 11, 289–299. [Google Scholar]
  • Beketov M.A., 2008b. First data on caddisflies (Trichoptera) of streams of northern middle Siberia, Russia. Entomol. News, 119, 299–302. [CrossRef] [Google Scholar]
  • Beketov M.A., 2009. Rapoport effect is detected in a river system and is based on nested organization. Global Ecol. Biogeogr., 18, 498–506. [Google Scholar]
  • Beketov M.A. and Godunko R.J., 2005. Baetis khakassikus n. sp., a new species of the subgenus Rhodobaetis Jacob, 2003 from Middle Siberia, Russian Federation (Ephemeroptera: Baetidae: Baetis). Genus, 16, 7–12. [Google Scholar]
  • Beketov M.A. and Kluge N.J., 2003. Mayflies of Southwestern Siberia, Russia (Ephemeroptera). Opusc. zool. flumin., 211, 1–6. [Google Scholar]
  • Beketov M.A. and Liess M., 2008. An indicator for effects of organic toxicants on lotic invertebrate communities: Independence of confounding environmental factors over an extensive river continuum. Environ. Pollut., 156, 980–987. [CrossRef] [PubMed] [Google Scholar]
  • Bernatchez L. and Wilson C.C., 1998. Comparative phylogeography of Nearctic and Palearctic fishes. Mol. Ecol., 7, 431–452. [Google Scholar]
  • Bilton D.T., Freeland J.R. and Okamura B., 2001. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst., 32, 159–181. [CrossRef] [Google Scholar]
  • Bonada N., Murria C., Zamora-Munoz C., El Alami M., Poquet J.M., Punti T., Moreno J.L., Bennas N., Alba-Tercedor J., Ribera C. and Prat N., 2009. Using community and population approaches to understand how contemporary and historical factors have shaped species distribution in river ecosystems. Global Ecol. Biogeogr., 18, 202–213. [Google Scholar]
  • Brodsky K.A., 1980. The mountain torrent of Tien-Shan: a faunistic-ecology essay, Monographiae Biologicae, Vol. 39, Junk, The Hague, The Netherlands. [Google Scholar]
  • Brown J.H., 1995. Macroecology, University of Chicago Press, Chicago, USA. [Google Scholar]
  • Burgman M.A., 1989. The habitat volumes of scarce and ubiquitous plants – a test of the model of environmental-control. Am. Nat., 133, 228–239. [Google Scholar]
  • Dobson M. and Frid C., 1998. Ecology of aquatic systems, Longman, Harlow, UK. [Google Scholar]
  • Dynesius M. and Jansson R., 2000. Evolutionary consequences of changes in species' geographical distribution driven by Milankovitch climate oscillations. P. Natl. Acad. Sci. USA, 97, 9115–9120. [CrossRef] [Google Scholar]
  • Ehlers J. and Gibbard P.L., 2007. The extent and chronology of Cenozoic Global Glaciation. Quatern. Int., 164-165, 6–20. [CrossRef] [Google Scholar]
  • Euro-limpacs Consortium, 2006. Freshwaterecology.info – The Taxa and Autecology Database for Freshwater Organisms, Version 3.0, www.freshwaterecology.inf [Google Scholar]
  • Gaston K.J., 1994. Rarity, Chapman & Hall, London, UK. [Google Scholar]
  • Gaston K.J. and Blackburn T.M., 2000. Pattern and process in macroecology, Blackwell Science Ltd., Oxford, UK. [Google Scholar]
  • Gotelli N.J. and Colwell R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett., 4, 379–391. [Google Scholar]
  • Gregory R.D. and Gaston K.J., 2000. Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos, 88, 515–526. [CrossRef] [Google Scholar]
  • Hernández Fernández M. and Vrba E.S., 2005. Rapoport effect and biomic specialization in African mammals: revisiting the climatic variability hypothesis. J. Biogeogr., 32, 903–918. [Google Scholar]
  • Hershey A.E., Pastor J., Peterson B.J. and Kling G.J., 1993. Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river. Ecology., 74, 2415–2520. [Google Scholar]
  • Hof C., Brändle M. and Brandl R., 2006. Lentic odonates have larger and more northern ranges than lotic species. J. Biogeogr., 33, 63–70. [CrossRef] [Google Scholar]
  • Hof C., Brändle M. and Brandl R., 2008. Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Global Ecol. Biogeogr., 17, 539–546. [CrossRef] [Google Scholar]
  • Hortal J., Jimenez-Valverde A., Gomez J.F., Lobo J.M. and Baselga A., 2008. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos, 117, 847–858. [CrossRef] [Google Scholar]
  • Hutchinson G.E., 1957. Concluding remarks. Cold Spring Harbour Symposia on Quantitative Biology, 22, 415–427. [Google Scholar]
  • Illera J.C., Diaz M. and Nogales M., 2006. Ecological traits influence the current distribution and range of an island endemic bird. J. Biogeogr., 33, 1192–1201. [CrossRef] [Google Scholar]
  • Illies J. and Botosaneanu L., 1963. Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considérées surtout du point de vue faunistitique. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, 12, 1–57. [Google Scholar]
  • Ioganzen B.G., 1953. Fish-production regions of West Siberia and their biological and production characteristic [in Russian]. Trudy Tomskogo gosudarstvennogo universiteta, 125, 7–44. [Google Scholar]
  • Jacobsen D., 2008. Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates. Oecologia, 154, 795–807. [CrossRef] [PubMed] [Google Scholar]
  • Kessler M., 2002. Range size and its ecological correlates among the pteridophytes of Carrasco National Park, Bolivia. Global Ecol. Biogeogr., 11, 89–102. [CrossRef] [Google Scholar]
  • Kovats Z.E., Ciborowski J.J.H. and Corkum L.D., 1996. Inland dispersal of adult aquatic insects. Freshwater Biol., 36, 265–276. [Google Scholar]
  • Kluge N.J., 1997. Order mayflies – Ephemeroptera. In: Tsalolikhin S.J. (ed.), Key to the freshwater invertebrates of Russia and the adjacent lands, Vol. 3: Arachnids and lower insects [in Russian], Zool. Inst. Russ. Acad. Sci., St Petersburg, Russia, 176–220. [Google Scholar]
  • Kluge N.J., 2007. Review of Ameletidae (Ephemeroptera) of Russia and adjacent lands. Russian Entomol. J., 16, 245–258. [Google Scholar]
  • Lomolino M.V., Riddle B.R. and Brown J.H., 2006. Biogeography, Sinauer Associates, Sunderland, USA. [Google Scholar]
  • Milkov F.N. and Gvozdetskii N.A., 1976. Physical geography of USSR [in Russian], Gidrometeoizdat, Moscow, USSR. [Google Scholar]
  • Munzel U. and Hothorn L.A., 2001. A unified approach to simultaneous rank test procedures in the unbalanced one-way layout. Biometrical J., 43, 553–569. [CrossRef] [Google Scholar]
  • Novikova E.A. and Kluge N.J., 1997. Mayflies (Ephemeroptera) of West Siberian Lowland and oil pollution. In: Landolt P. and Sartori M. (eds.), Ephemeroptera & Plecoptera: Biology-Ecology-Systematics, 269–274. [Google Scholar]
  • Parmesan C., Gaines S., Gonzalez L., Kaufman D.M., Kingsolver J., Peterson A.T. and Sagarin R., 2005. Empirical perspectives on species borders: from traditional biogeography to global change. Oikos, 108, 58–75. [CrossRef] [Google Scholar]
  • R Development Core Team, 2004. R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
  • Rapoport E.H., 1982. Areography. Geographical Strategies of Species, Pergamon, New York, USA. [Google Scholar]
  • Ribera I. and Vogler A.P., 2000. Habitat type as a determinant of species range sizes: the example of lotic-lentic differences in aquatic Coleoptera. Biol. J. Linn. Soc., 71, 33–52. [Google Scholar]
  • Ribera I., Foster G.N. and Vogler A.P., 2003. Does habitat use explain large scale species richness patterns in aquatic beetles in Europe? Ecography, 26, 145–152. [Google Scholar]
  • Rihter G.D., 1963. West Siberia. Natural conditions and natural resources of USSR [in Russian], Acad. Sci. USSR, Moscow, USSR. [Google Scholar]
  • Sokolov A.A., 1952. Geography of USSR [in Russia], Gidrometeoizdat, Leningrad, USSR. [Google Scholar]
  • Stevens G.C., 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat., 133, 240–256. [Google Scholar]
  • Stevens G.C., 1992. The elevational gradient in elevational range: an extension of Rapoport's latitudinal rule to altitude. Am. Nat., 140, 893–911. [Google Scholar]
  • Tiunova T.M., 2007. Current state of investigations of mayflies (Ephemeroptera) of Far East and neighbouring territories. Euroas. Entomol. J., 6, 181–194. [Google Scholar]
  • Tshernova O.A., Kluge N.J., Sinichenkova N.D. and Belov V.V., 1986. Order Ephemeroptera – Mayflies. In: Ler P.A. (ed.), Key to the insects of Soviet Far East, Vol. I: Apterygota, Palaeoptera, Hemimetabola [in Russian], Nauka, Leningrad, Russia, 99–142. [Google Scholar]
  • Ward J.V., 1992. Aquatic Insect Ecology. 1. Biology and Habitat, Wiley, New York, USA. [Google Scholar]
  • Webb T. and Bartlein P.J., 1992. Global changes during the last 3 million years: climatic controls and climatic responses. Ann. Rev. Ecol. Evol. S., 23, 141–173. [Google Scholar]
  • Whittaker R.J., Nogués-Bravo D. and Araújo M.B., 2007. Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecol. Biogeogr., 16, 76–89. [CrossRef] [Google Scholar]
  • Winterbourn M.J., Chadderton W.L., Entrekin S.A., Tank J.L. and Harding J.S., 2007. Distribution and dispersal of adult stream insects in a heterogeneous montane environment. Fund. Appl. Limnol., 168, 127–135. [Google Scholar]
  • Zaika V.V., 2006. Insects-rheophils (Insecta, Ephemeroptera, Trichoptera, Plecoptera) of Todzha hollow (Republic Tyva). In: Abstracts of Multiregional Conference of Entomologists of Siberia and Far East, 20–24 September 2006, Novosisbirsk, Russia, 69–71. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.