Free Access
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 3, 2009
Page(s) 181 - 193
Published online 28 July 2009
  • APHA (American Public Health Association)/American Water Works Association/Water Environment Federation, 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn., Washington D.C. [Google Scholar]
  • Asaeda T. and Ca V.T., 1993. The subsurface transport of heat and moisture and its effect on the environment: A numerical model. Boundary-Layer Meteorol., 65, 159–179. [CrossRef] [Google Scholar]
  • Asaeda T. and Hung L.Q., 2007. Internal heterogeneity of ramet and flower densities of Typha angustifolia near the boundary of the stand. Wetl. Ecol. Manag., 15, 155–164. [CrossRef] [Google Scholar]
  • Asaeda T. and Rajapakse L., 2008. Effects of spates of different magnitudes on a Phragmites japonica population on a sandbar of a frequently disturbed river. River Res. Appl., 24, 1310–1324. [CrossRef] [Google Scholar]
  • Asaeda T., Hai D.N., Manatunge J., Williams D. and Roberts J., 2005. Latitudinal characteristics of below- and above-ground biomass of Typha: a modelling approach. Ann. Bot., 96, 299–312. [CrossRef] [PubMed] [Google Scholar]
  • Asaeda T., Siong K., Kawashima T. and Sakamoto K., 2008. Growth of Phragmites japonica on a sandbar of a regulated river: morphological adaptation of the plant to low water and nutrient availability in the substrate. River Res. Appl., doi:10.1002/rra.1191. [Google Scholar]
  • ASTM (American Society for Testing and Materials), 2002. Standard Test Methods for Sieve Analysis and Water Content of Refractory Materials, C92–C95. [Google Scholar]
  • Austin A.T., Yahdjian L., Stark J.M., Belnap J., Porporato A., Norton U., Ravetta D.A. and Scaeffer S.M., 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221–235. [PubMed] [Google Scholar]
  • Azami K., Suzuki H. and Toki S., 2004. Changes in riparian vegetation communities below a large dam in a monsoonal region: Futase dam, Japan. River Res. Appl., 20, 549–563. [CrossRef] [Google Scholar]
  • Barger N.N., D'Antonio C.M.D., Ghneim T. and Cuevas E., 2003. Constraints to colonization and growth of the African grass, Melinis minutiflora, in a Venezuelan savanna. Plant Ecol., 167, 31–43. [CrossRef] [Google Scholar]
  • Bravard J.-P., Landon N., Peiry J.-L. and Piégay H., 1999. Principles of engineering geomorphology for managing channel erosion and beadload transport, examples from French rivers. Geomorphology, 31, 291–311. [CrossRef] [Google Scholar]
  • Brunet R.-C. and Astin K.B., 2000. A 12-month sediment and nutrient budget in a floodplain reach of the River Adour, southwest France. River Res. Appl., 16, 267–277. [Google Scholar]
  • Clifford P., Richardson S. and Hémon D., 1989. Assessing the significance of the correlation between two spatial processes. Biometrics, 45, 123–134. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Colom M.R. and Vazzana C., 2002. Water stress effects on three cultivars of Eragrostis curvula. Ital. J. Agron., 6, 127–132. [Google Scholar]
  • Dillaha T.A., Reneau R.B., Mostanghimi S. and Lee D., 1989. Vegetative filter strips for agricultural non point source pollution control. Trans. Am. Soc. Agr. Eng., 32, 513–519. [Google Scholar]
  • Dutilleul P., 1993a. Spatial heterogeneity and the design of ecological field experiments. Ecology, 74, 1646–1658. [CrossRef] [Google Scholar]
  • Dutilleul P., 1993b. Modifying the t test for assessing the correlation between two spatial processes. Biometrics, 49, 305–314. [CrossRef] [Google Scholar]
  • Gatsuk L.E., Smirnova O.V., Vorontzova L.I., Zaugolnova L.B. and Zhukova L.A., 1980. Age status of plants of various growth forms: A review. J. Ecol., 67, 21–33. [Google Scholar]
  • Goodall D.W., 1970. Statistical plant ecology. Annu. Rev. Ecol. Syst., 1, 99–124. [CrossRef] [Google Scholar]
  • Grime J.P., 1979. Plant Strategies and Vegetation Processes, John Wiley and Son, Chichester. [Google Scholar]
  • Halvorson W.L. and Guertin P., 2003. USGS Weeds in the West project: Status of introduced plants in southern Arizona parks, Plant Fact Sheets prepared for Tuzigoot National Monument, Tucson, AZ: U.S. Geological Survey, [Google Scholar]
  • Harris R.R., Fox C.A. and Risser R., 1987. Impacts of hydroelectric development on riparian vegetation in the Sierra Nevada region, California, USA. Environ. Manage., 11, 519–527. [CrossRef] [Google Scholar]
  • Islam A.K.M.S., Asher C.J. and Edwards D.G., 1987. Response of plants to calcium concentration in flowing solution culture with chloride or sulphate as the counter-ion. Plant. Soil., 98, 377–395. [CrossRef] [Google Scholar]
  • Jongman R.H.G., Ter Braak C.J.F. and Van Tongeren O.F.R., 1987. Data Analysis in Community and Landscape Ecology, Cambridge University Press, New York. [Google Scholar]
  • Kuo S., 1996. Phosphorus. In: Methods of Soil Analysis: Chemical Methods, Part III, Sparks D.L. (ed.), ASA and SSSA: Madison, USA, 869–919. [Google Scholar]
  • Lamont B.B., 2003. Structure, ecology and physiology of root clusters − A review. Plant Soil, 248, 1–19. [CrossRef] [Google Scholar]
  • Loneragan J.F. and Snowball K., 1969. Calcium requirements of plants. Aust. J. Agric. Res., 20, 465–478. [CrossRef] [Google Scholar]
  • Matsumoto J., Muraoka H. and Washitani I., 2000. Whole plant carbon gain of an endangered herbaceous species Aster kantoensis and the influence of shading by an alien grass Eragrostis curvula in its gravelly floodplain habitat. Ann. Bot., 86, 787–797. [CrossRef] [Google Scholar]
  • McCully M., 1995. How do real roots work? Some new views of root structure. Plant Physiol., 109, 1–6. [PubMed] [Google Scholar]
  • Meimei C., Baodong C. and Petra M., 2008. Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture. J. Environ. Sci., 20, 1231–1237. [CrossRef] [Google Scholar]
  • Mengel K. and Kirkby E.A., 2001. Principles of Plant Nutrition, 5th edn., Kluwer Academic Publishers, Dordrecht. [Google Scholar]
  • MLIT, 2000. Arakawa basin environmental impact assessment report, Arakawa Upstream Office, Ministry of Land, Infrastructure and Transport Japan (in Japanese). [Google Scholar]
  • Montani T., Busso C.A., Fernandez O.A. and Brevedan R.E., 1996. Production and nitrogen cycling in an ecosystem of Eragrostis curvula in semi arid Argentina I. Plant biomass productivity. Acta. Oecol., 17, 151–162. [Google Scholar]
  • Murphy J. and Riley J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta., 27, 31–36. [CrossRef] [Google Scholar]
  • Nakayama N., Nishihiro J., Kayaba Y., Muranaka T. and Washitani I., 2007. Seed deposition of Eragrostis curvula, an invasive alien plant on a river floodplain. Ecol. Res., 22, 696–701. [CrossRef] [Google Scholar]
  • Osem Y., Perevolotsky A. and Kigel J., 2002. Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. J. Ecol., 90, 936–946. [CrossRef] [Google Scholar]
  • Reith J.W.S., Inkson R.H.E., Scott N.M., Caldwell K.S., Ross J.A.M. and Simpson W.E., 1987. Estimates of soil phosphorus for different soil series. Fert. Res., 11, 123–142. [CrossRef] [Google Scholar]
  • Roberts F.J. and Carbon B.A., 1969. Growth of tropical and temperate grasses and legumes under irrigation in southwest Australia. Trop. Grassl., 3, 109–116. [Google Scholar]
  • Schulze E.-D., 2000. The Carbon and Nitrogen Cycle of Forest Ecosystems. In: Caldwell M.M., Heldmaier G., Lange O.L., Mooney H.A., Schulze E.-D. and Sommer U. (eds.), Carbon and Nitrogen Cycling in European Forest Ecosystems, Ecological Studies, Volume 142, Springer, Heidelberg, Germany, 3–13. [Google Scholar]
  • Sharma P., Asaeda T. and Fujino T., 2007. Effect of water depth on the rhizome dynamics of Typha angustifolia. Wetl. Ecol. Manag., 16, 43–49. [Google Scholar]
  • Sigler W.V. and Turco R.F., 2002. The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl. Soil. Ecol., 21, 107–118. [CrossRef] [Google Scholar]
  • Steiger J. and Gurnell A.M., 2002. Spatial hydrogeomorphological influences on sediment and nutrient in riparian zones: observation from the Garonne River, France. Geomorphology, 49, 1–23. [CrossRef] [Google Scholar]
  • Steiger J., Tabacchi E., Dufour S., Corenblit D. and Peiry J.-L., 2005. Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: A review for the temperate zone. River Res. Appl., 21, 719–737. [CrossRef] [Google Scholar]
  • Tazaki K., Sato M., van der Gaast S. and Morikawa T., 2003. Effects of clay-rich river-dam sediments on downstream fish and plant life. Clay Miner., 38, 243–253. [CrossRef] [Google Scholar]
  • Ter Braak C.J.F. and Smilauer P., 2002. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5), Microcomputer Power (Ithaca), New York. [Google Scholar]
  • Tropical Forages: an interactive selection tool, [Google Scholar]
  • USEPA (United States Environmental Protection Agency), Digestion method 3050B, acid digestion of sediments and soils SW-846, [Google Scholar]
  • USDA (United States Department of Agriculture), 2008. Natural Resources Conservation Service (NRCS), [Google Scholar]
  • Van Oorschot M., Hayes C. and Van Strien I., 1998. The influence of soil desiccation on plant production, nutrient uptake and plant nutrient availability in two French floodplain grasslands. River Res. Appl., 14, 313–327. [Google Scholar]
  • Wan C. and Sosebee R.E., 2000. Central dieback of the dryland bunchgrass Eragrostis curvula (weeping lovegrass) re-examined: The experimental clearance of tussock centres. J. Arid Environ., 46, 69–78. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.