Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 3, 2009
Page(s) 195 - 202
DOI https://doi.org/10.1051/limn/2009019
Published online 21 August 2009
  • Adams M.S., Titus J. and McCrackenM., 1974. Depth distribution of photosynthetic activity in a Myriophyllum spicatum community in Lake Wingra. Limnol. Oceanogr., 19, 377–389. [Google Scholar]
  • Asaeda T., Sultana M., Manatunge J. and Fujino T., 2004. The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. Environ. Exp. Bot., 52, 225–238. [CrossRef] [Google Scholar]
  • Björkman O. and Demmig-Adams B., 1994. Regulation of Photosynthetic Light Energy Capture, Conversion, and Dissipation in Leaves of Higher Plants. In: Schulze E.D. and Caldwell M.M. (eds.), Ecophysiology of Photosynthesis, Ecological Studies, 100, Springer-Verlag, Berlin, 17 p. [Google Scholar]
  • Cedergreen N., Andersen L., Olesen C.F., Spliid H.H. and Streibig J.C., 2005. Does the effect of herbicide pulse exposure on aquatic plants depend on Kow or mode of action? Aquat Toxicol., 71, 261–271. [Google Scholar]
  • Eggert A., Van Hasselt P.R. and Breeman A.M., 2003. Chilling-induced photoinhibition in nine isolates of Valonia utricularis (Chlorophyta) from different climate regions. J. Plant Physiol., 160, 881–891. [Google Scholar]
  • Jones J.I., 2005. The metabolic cost of bicarbonate use in the submerged plant Elodea nuttallii. Aquat. Bot., 83, 371–381. [Google Scholar]
  • Kamara Sh. and Pflugmacher S., 2007. Phragmites australis and Quercus robur leaf extracts affect antioxidative system and photosynthesis of Ceratophyllum demersum. Ecotox. Environ. Safe., 67, 240–246. [Google Scholar]
  • Kirk J.T.O., 1996. Light and photosynthesis in aquatic ecosystems, Cambridge University Press, Cambridge, 44 p. [Google Scholar]
  • Lambert S.J., Thomas K.V. and Davy A.J., 2006. Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes. Chemosphere, 63, 734–743. [CrossRef] [PubMed] [Google Scholar]
  • Larcher W., 2003. Physiological Plant Ecology – Ecophysiology and Stress Physiology of Functional Groups, 4th edition, Springer-Verlag, Berlin, 107 p. [Google Scholar]
  • Maberly S.C., 1983. The interdependence of photon irradiance and free carbon dioxide or bicarbonate concentration on the photosynthetic compensation points of freshwater plants. New Phytol., 93, 1–12. [CrossRef] [Google Scholar]
  • Maberly S.C. and Madsen T.V., 1998. Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3. Funct. Ecol., 12, 99–106. [CrossRef] [Google Scholar]
  • Machova K., Elster J. and Adamec L., 2008. Xanthophyceaen assemblages during winter-spring flood: autecology and ecophysiology of Tribonema fonticolum and T. monochloron. Hydrobiologia, 600, 155–168. [Google Scholar]
  • Madsen T.V. and Sand-Jensen K., 1991. Photosynthetic carbon assimilation in aquatic plants. Aquat. Bot., 41, 5–40. [CrossRef] [Google Scholar]
  • Madsen T.V., Maberly S.C. and Bowes G., 1996. Photosynthetic acclimation of submerged angiosperms to CO2 and HCO3. Aquat. Bot., 53, 15–30. [CrossRef] [Google Scholar]
  • Nyström B., Van Slooten K.B., Bérard A., Grandjean D., Druart J.C. and Leboulanger C., 2002. Toxic effects of Irgarol 1051 on phytoplankton and macrophytes in Lake Geneva. Water Res., 36, 2020–2028. [CrossRef] [PubMed] [Google Scholar]
  • Platt T.C., Gallegos L. and Harrison W.G., 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38, 687–701. [Google Scholar]
  • Sand-Jensen K., 1977. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot., 3, 55–63. [CrossRef] [Google Scholar]
  • Sand-Jensen K., 1989. Environmental variables and their effect on photosynthesis of aquatic plant communities. General features of aquatic photosynthesis. Aquat. Bot., 34, 5–25. [CrossRef] [Google Scholar]
  • Sand-Jensen K. and Madsen T.V., 1991. Minimum light requirements of submerged freshwater macrophytes in laboratory growth experiments. J. Ecol., 79, 749–764. [CrossRef] [Google Scholar]
  • Schwarz A.-M. and Howard-Williams C., 1993. Aquatic weed-bed structure and photosynthesis in two New Zealand lakes. Aquat. Bot., 46, 263–281. [CrossRef] [Google Scholar]
  • Shen H. and Song L., 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia, 592, 475–486. [Google Scholar]
  • Short F.T. and Neckles H.A., 1999. The effects of global climate change on seagrasses. Aquat. Bot., 63, 169–196. [CrossRef] [Google Scholar]
  • Silva J., Santos R., Calleja M.L. and Duarte C.M., 2005. Submerged versus air-exposed intertidal macrophyte productivity: from physiological to community-level assessments. J. Exp. Mar. Biol. Ecol., 317, 87– 95. [Google Scholar]
  • Van Duin E.H.S., Blom G., Los F.J., Maffione R., Zimmerman R., Cerco C.F., Dortch M. and Best E.P.H., 2001. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiologia, 444, 25–42. [CrossRef] [Google Scholar]
  • Vermaat J.E. and Verhagen F.C.A., 1996. Seasonal variation in the intertidal seagrass Zostera noltii Hornem.: coupling demographic and physiological patterns. Aquat. Bot., 52, 259–281. [CrossRef] [Google Scholar]
  • Wang W. and Freemark K., 1995. The use of plants for environmental monitoring and assessment. Ecotox. Environ. Safe., 30, 289–301. [CrossRef] [Google Scholar]
  • Wetzel R.G., 2001. Limnology: lake and river ecosystems, 3rd edition, Academic Press, London, 49 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.