Free Access
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 2, 2009
Page(s) 93 - 105
Published online 20 June 2009
  • Abdul-Hussein M.M. and Mason C.F., 1988. The phytoplankton community of a eutrophic reservoir. Hydrobiologia, 169, 265–277. [CrossRef] [Google Scholar]
  • APHA, 1995. Standard Methods for the Examination of Water and Wastewater, 19th edition, APHAAWWAWEF, Washington, DC. [Google Scholar]
  • Bettinetti R., Morabito G. and Provini A., 2000. Phytoplankton assemblage structure and dynamics as indicator of the recent trophic and biological evolution of the western basin of Lake Como (N. Italy). Hydrobiologia, 435, 177–190. [CrossRef] [Google Scholar]
  • Brook A.S. and Torke B.G., 1977. Vertical and seasonal chlorophyll a in Lake Michigan. J. Fish. Res. Board Can., 34, 2280–2287. [Google Scholar]
  • Calijuri M.C., Dos Santos A.C.A. and Jati S., 2002. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, S.P. Brazil). J. Plankton Res., 24, 617–634. [Google Scholar]
  • Chen Y., Qin B., Teubner K. and Dokulil M.T., 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankt. Res., 25, 445–453. [Google Scholar]
  • Dufrêne M. and Legendre P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366. [Google Scholar]
  • Gervais F., Siedel U., Heilmann B., Weithoff G., Heisig-Gunkel G. and Nicklisch A., 2003. Smallscale vertical distribution of phytoplankton, nutrients and sulphide below the oxycline of a mesotrophic lake. J. Plankton Res., 25, 273–278. [Google Scholar]
  • Grime J.P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat., 111, 1169–1194. [Google Scholar]
  • Grime J.P., 1979. Plant Strategies and Vegetation Processes, John Wiley, New York. [Google Scholar]
  • Harris G.P., 1986. Phytoplankton Ecology: Structure, Function and Fluctuation, Chapman and Hall, New York. [Google Scholar]
  • Higashi Y. and Seki H., 2000. Ecological adaptation and acclimatization of natural freshwater phytoplankton with a nutrient gradient. Environ. Pollut., 109, 311–320. [CrossRef] [PubMed] [Google Scholar]
  • Hirose H. and Yamagishi T., 1977. Illustrations of the Japanese Freshwater Algae, Uchidarokakuho, Tokyo, 933 p. (in Japanese). [Google Scholar]
  • Horne A.J. and Goldman C.R., 1994. Limnology, McGrow-Hill Inc., New York. [Google Scholar]
  • Huisman J., Jonker R.R., Zonneveld C. and Weissing F.J., 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology, 80, 211–222. [CrossRef] [Google Scholar]
  • Huovinen P.S., Brett M.T. and Goldman C.R., 1999. Temporal and vertical dynamics of phytoplankton net growth in Castle Lake, California. J. Plankton Res., 21, 373–385. [Google Scholar]
  • Jiang J.G., Wu S.G. and Shen Y.F., 2007. Effects of seasonal succession and water pollution on the protozoan community structure in an eutrophic lake. Chemosphere, 66, 523–532. [CrossRef] [PubMed] [Google Scholar]
  • John D.M., Whitton B.A. and Brook A.J., 2003. The Freshwater Algal Flora of the British Isles, An Identification Guide to Freshwater and Terrestrial Algae, Cambridge University Press, New York, USA. [Google Scholar]
  • Kalff J., 2002. Limnology: Inland water ecosystems, Prentice-Hall, New Jersey. [Google Scholar]
  • Karacaoglu D., Dalkiran N. and Dere S., 2006. Factors affecting the phytoplankton diversity and richness in a shallow eutrophic lake in Turkey. J. Freshwat. Ecol., 21, 575–581. [Google Scholar]
  • KARICO, 2001. Report of Water Monitoring in Agricultural Reservoirs, S. Korea, Korea Agriculture and Rural Infrastructure Cooperation, Ansan (in Korean). [Google Scholar]
  • Keister J.E. and Peterson W.T., 2003. Zonal and seasonal variations in zooplankton community structure off the central Oregon coast, 1998–2000. Prog. Oceanogr., 57, 341–361. [CrossRef] [Google Scholar]
  • Kenkel N.C. and Orloci L., 1986. Applying metric and non-metric multidimensional scaling to ecological studies: some new results. Ecology, 67, 919–928. [CrossRef] [Google Scholar]
  • Kim H.S., 2004. Study on the growth dynamics and ecotechnological control of algae in reservoirs, Ph.D. Dissertation Thesis, Kunkuk University, Seoul, Korea (in Korean with English abstract). [Google Scholar]
  • Kim H.S., Hwang S.J., Shin J.K., An K.G. and Yoon C.G., 2007. Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia, 581, 255–267. [CrossRef] [Google Scholar]
  • Kim H.S., Hwang S.J. and Konf D.S., 2008. Growth kinetics of phytoplankton in shallow eutrophic reservoir. J. Korean Society on Water Quality, 24, 550–555 (in Korean with English abstract). [Google Scholar]
  • Kokociński M. and Soininen J., 2008. Temporal variation in phytoplankton in two lakes with contrasting disturbance regimes. Fund. Appl. Limnol., 171, 39–48. [CrossRef] [Google Scholar]
  • Laughlin D.C. and Abella S.R., 2007. Abiotic and biotic factors explain independent gradients of plant community composition in ponderosa pine forests. Ecol. Model., 205, 231–240. [CrossRef] [Google Scholar]
  • McCune B. and Grace J.B., 2002. Analysis of Ecological Communities, MjM Software Design, Gleneden Beach, Oregon, USA. [Google Scholar]
  • McCune B. and Mefford M.J., 1999. PCORD. Multivariate Analysis of Ecological Data, Version 4.41, MjM Software, Gleneden Beach, Oregon, USA. [Google Scholar]
  • Mielke E.W., Berry K.J. and Johnson E.S., 1976. Multiresponse permutation procedures for a priori classifications. Commun. Stat. Theory Methods, 5, 1409–1424. [CrossRef] [Google Scholar]
  • Oh H.M., Ahn C.Y., Lee J.W., Chon T.S., Choi K.H. and Park Y.S., 2007. Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks. Ecol. Model., 203, 109–118. [CrossRef] [Google Scholar]
  • Padisak J., 1992. Seasonal succession of phytoplankton in a large shallow lake (Balaton, Hungary) a dynamic approach to ecological memory, its possible role and mechanisms. J. Ecol., 80, 217–230. [CrossRef] [Google Scholar]
  • Peterson W.T. and Keister J.E., 2003. Interannual variability in copepod community composition at a coastal station in the northern California Current: a multivariate approach. Deep Sea Res., 50, 2499–2517. [CrossRef] [Google Scholar]
  • Pinilla G.A., 2006. Vertical distribution of phytoplankton in a clear water lake of Colombian Amazon (Lake Boa, Middle Caquetá). Hydrobiologia, 568, 79–90. [CrossRef] [Google Scholar]
  • Prescott G.W., 1962. Algae of the Western Great Lakes Area, Wm. C. Brown Co., Dubuque, Iowa. [Google Scholar]
  • Priscu J.C. and Goldman C.R., 1983. Seasonal dynamics of the deep-chlorophyll maximum in Castle lake, California. Can. J. Fish. Aquat. Sci., 40, 208–214. [CrossRef] [Google Scholar]
  • Ptacnik R., Diehl S. and Berger S., 2003. Performance of sinking and non-sinking phytoplankton taxa in a gradient of mixing depths. Limnol. Oceanogr., 48, 1903–1912. [CrossRef] [Google Scholar]
  • Reynolds C.S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol., 14, 111–142. [Google Scholar]
  • Reynolds C.S., 1988. Functional morphology and adaptive strategies of freshwater phytoplankton. In: Sandgren C.D. (ed.), Growth and Survival Strategies of Freshwater Phytoplankton, Cambridge University Press, Cambridge, 388–433. [Google Scholar]
  • Reynolds C.S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge. [Google Scholar]
  • Romo S. and Miracle R., 1994. Long-term phytoplankton changes in a shallow hypertrophic lake, Albufera of Valencia (Spain). Hydrobiologia, 275/276, 153–164. [Google Scholar]
  • Salmaso N., 1996. Seasonal variation in the composition and rate of change of the phytoplankton community in a deep subalpine lake (Lake Garda, Northern Italy). An application of nonmetric multidimensional scaling and cluster analysis. Hydrobiologia, 337, 49–68. [CrossRef] [Google Scholar]
  • Salmaso N., 2002. Ecological patterns of phytoplankton assemblages in Lake Garda: seasonal, spatial and historical features. J. Limnol., 61, 95–115. [Google Scholar]
  • Shannon C.E., 1948. A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423. [Google Scholar]
  • StatSoft Inc, 2004. STATISTICA (data analysis software system), Version 7, [Google Scholar]
  • Tilzer M.M., Paerl H.W. and Goldman C.R., 1977. Sustained viability of aphotic phytoplankton in Lake Taho (California Nevada). Limnol. Oceanogr., 22, 84–91. [CrossRef] [Google Scholar]
  • Valério E., Faria N., Paulino S. and Pereira P., 2008. Seasonal variation of phytoplankton and cyanobacteria composition and associated microcystins in six Portuguese freshwater reservoirs. Ann. Limnol. - Int. J. Lim., 44, 189–196. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wang X.L., Lu Y.L., He G.Z., Han J.Y. and Wang T.Y., 2007. Exploration of relationships between phytoplankton biomass and related environmental variables using multivariate statistic analysis in a eutrophic shallow lake: A 5-year study. J. Environ. Sci. (China), 19, 920–927. [PubMed] [Google Scholar]
  • Wetzel R.G., 2001. Limnology, Lake and River Ecosystems, Academic Press, San Diego, USA. [Google Scholar]
  • Winder M. and Hunter D.A., 2008. Temporal organizing of phytoplankton communities linked to physical forcing. Oecologia, 156, 179–192. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.