Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 2, 2009
Page(s) 79 - 92
DOI https://doi.org/10.1051/limn/2009011
Published online 20 June 2009
  • Billen G. and Garnier J., 1999. Nitrogen transfers through the Seine drainage network: a budget based on the application of the ‘Riverstrahler’ model. Hydrobiologia, 410, 139–150. [Google Scholar]
  • Boström B., Jansson M. and Forsberg C., 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol., 18, 5–59. [Google Scholar]
  • Broberg O. and Persson G., 1988. Particulate and dissolved phosphorus forms in freshwater: composition and analysis. Hydrobiologia, 170, 61–90. [CrossRef] [Google Scholar]
  • Butturini A. and Sabater F., 1998. Ammonium and phosphate retention in a Mediterranean stream: hydrological versus temperature control. Can. J. Fish. Aquat. Sci., 55, 1938–1945. [CrossRef] [Google Scholar]
  • Chapin F.S., Sala O.E., Burke I.C., Grime J.P., Hooper D.U., Lauenroth W.K., Lombard A., Mooney H.A., Mosier A.R., Naeem S., Pacala S.W., Roy J., Steffen W.L. and Tilman D., 1998. Ecosystem consequences of changing biodiversity: experimental evidence and a research agenda for the future. Bioscience, 48, 45–52. [CrossRef] [Google Scholar]
  • Chapra S.C., Canale R.P. and Amy G.L., 1997. Empirical models for disinfection by-products in lakes and reservoirs. J. Environ. Engineering-ASCE, 123, 714–715. [CrossRef] [Google Scholar]
  • Crenshaw C.L., Valett H.M. and Webster J.R., 2002. Effects of augmentation of coarse particulate organic matter on metabolism and nutrient retention in hyporheic sediments. Freshwat. Biol., 47, 1820–1831. [CrossRef] [Google Scholar]
  • Dent C.L. and Grimm N.B., 1999. Spatial heterogeneity of stream water nutrient concentrations over successional time. Ecology, 80, 2283–2298. [CrossRef] [Google Scholar]
  • Dorioz J.M. and Ferhi A., 1994. Non-point pollution and management of agricultural areas: phosphorus and nitrogen transfer in an agricultural watershed. Wat. Res., 28, 395–410. [CrossRef] [Google Scholar]
  • Fisher S.G., Grimm N.B., Marti E., Holmes R.M. and Jones J.B., 1998. Material spiraling in stream corridors: A telescoping ecosystem model. Ecosystems, 1, 19–34. [CrossRef] [Google Scholar]
  • Gordon N.D., McMahon T.A. and Finlayson B.L., 1994. Stream hydrology, John Wiley & Sons, West Sussex, England, 526 p. [Google Scholar]
  • Guasch H., Armengol J., Martí E. and Sabater S., 1998. Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams. Wat. Res., 32, 1067–1074. [CrossRef] [Google Scholar]
  • Gücker B. and Pusch M.T., 2006. Regulation of nutrient uptake in eutrophic lowland streams. Limnol. Oceanogr., 51, 1443–1453. [Google Scholar]
  • Haggard B.E., Storm D.E. and Stanley E.H., 2001. Effects of a point source input on stream nutrient retention. J. Am. Water Resour. Assoc., 37, 1291–1299. [CrossRef] [Google Scholar]
  • Haggard B.E., Stanley E.H. and Storm D.E., 2005. Nutrient retention in a point-source-enriched stream. J. N. Am. Benthol. Soc., 24, 29–47. [CrossRef] [Google Scholar]
  • Hickey C.W., 1988. River oxygen uptake and respiratory decay of sewage fungus biofilms. Wat. Res., 22, 1375–1380. [CrossRef] [Google Scholar]
  • House W.A., Leach D.V. and Armitage P.D., 2001. Study of dissolved silicon and nitrate dynamics in a freshwater stream. Wat. Res., 35, 2749–2757. [Google Scholar]
  • Isaacs W.P. and Gaudy A.F., Jr., 1968. Atmospheric oxygenation in a simulated stream. J. Sanit. Eng. Div., Proc. ASCE, 94, 319–344. [Google Scholar]
  • Izagirre O. and Elosegui A., 2005. Environmental control of seasonal and inter-annual variations of periphytic biomass in a North Iberian stream. Ann. Limnol. - Int. J. Lim., 41, 35–46. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lefebvre S., Marmonier P. and Peiry J.L., 2006. Nitrogen dynamics in rural streams: differences between geomorphologic units. Ann. Limnol. - Int. J. Lim., 42, 43–53. [CrossRef] [EDP Sciences] [Google Scholar]
  • Martí E. and Sabater F., 1996. High variability in temporal and spatial nutrient retention in Mediterranean streams. Ecology, 77, 854–869. [Google Scholar]
  • Martí E., Aumatell J., Godé L., Poch M. and Sabater F., 2004. Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. J. Environ. Qual., 33, 285–293. [CrossRef] [PubMed] [Google Scholar]
  • Marzolf E.R., Mulholland P.J. and Steiman A.D., 1994. Improvements to diurnal upstream-downstream dissolved oxygen change technique for determining whole stream metabolism in small streams. Can. J. Fish. Aquat. Sci., 51, 1591–1599. [CrossRef] [Google Scholar]
  • Merrit R.W. and Cummins K.W., 1984. An introduction to the aquatic insects of North America, 722 p. [Google Scholar]
  • Merrit R.W. and Cummins K.W., 1996. Methods in stream ecology, Academic Press, London. [Google Scholar]
  • Merseburger G.C., Martí E. and Sabater F., 2005. Net changes in nutrient concentrations below a point source input in two streams draining catchments with contrasting land uses. Sci. Total Environ., 347, 217–229. [Google Scholar]
  • Miserendino M.L., 2007. Macroinvertebrate functional organization and water quality in a large arid river from Patagonia (Argentina). Ann. Limnol. - Int. J. Lim., 43, 133–145. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mulholland P.J., Fellows C.S., Tank J.L., Grimm N.B., Webster J.R., Hamilton S.K., Martí E., Ashkenas L., Bowden W.B., Dodds W.K., McDowell W.H., Paul M.J. and Peterson B.J., 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwat. Biol., 46, 1503–1517. [Google Scholar]
  • Newbold J.D., Elwood J.W., O'Neill R.V. and Van Winkle W., 1981. Measuring nutrient spiralling in streams. Can. J. Fish. Aquat. Sci., 38, 860–863. [CrossRef] [Google Scholar]
  • O’Connor D.J. and Dobbins W.E., 1958. Mechanism of reaeration in natural streams. Trans. Amer. Soc. Chem. Eng., 123, 641–684. [Google Scholar]
  • Odum H.T., 1956. Primary production in flowing water. Limnol. Oceanogr., 1, 102–117. [CrossRef] [Google Scholar]
  • Owens M., Edwards R.W. and Gibbs J.W., 1964. Some reaeration studies in stream. Int. J. Air. Wat. Poll., 8, 469–486. [Google Scholar]
  • Paul M.J. and Meyer J.L., 2001. Streams in the urban landscape. Ann. Rev. Ecol. Syst., 32, 333–365. [Google Scholar]
  • Pennak R.W., 1978. Fresh-water invertebrates of the United States, Wiley-Interscience, 788 p. [Google Scholar]
  • Prenda J. and Gallardo-Mayenco A., 1996. Self-purification, temporal variability and the macroinvertebrate community in small lowland Mediterranean streams receiving crude domestic sewage effluents. Arch. Hydrobiol., 136, 159–170. [Google Scholar]
  • Probst J.L., 1985. Nitrogen and phosphorus exportation in the Garonne Basin (France). J. Hydrol., 76, 281–305. [CrossRef] [Google Scholar]
  • Puig M.A., 1999. Els macroinvertebrats dels rius Catalans, Guia illustrada, 245 p. [Google Scholar]
  • Rathbun R.E., Stephens D.W., Schultz D.J. and Tai D.Y., 1978. Laboratory studies of gas tracer for reaeration. Proc. ASCE, 104, 215–219. [Google Scholar]
  • Rodier J., 1996. L'analyse de l'eau : eaux naturelles, eaux résiduaires, eau de mer, Dunod, Paris, 1383 p. [Google Scholar]
  • Ruggiero A., Solimini A.G. and Carchini G., 2006. Effects of a waste water treatment plant on organic matter dynamics and ecosystem functioning in a Mediterranean stream. Ann. Limnol. - Int. J. Lim., 42, 97–107. [CrossRef] [EDP Sciences] [Google Scholar]
  • Stream Solute Workshop, 1990. Concepts and methods for assessing solute dynamics in stream ecosystems. J. N. Amer. Benthol. Soc., 9, 95–119. [CrossRef] [Google Scholar]
  • Tachet H., Richoux P., Bournaud M. and Usseglio-Polatera P., 2000. Invertébrés d’eau douce : systématique, biologie, écologie, CNRS Éditions, 587 p. [Google Scholar]
  • Thyssen N., Erlandsen M. and Jeppensen E., 1987. Reaeration oxygen in shallow macrophyte-rich streams. Int. Rev. Ges. Hydrobiol., 72, 405–429. [Google Scholar]
  • Turlan T., Birgand F. and Marmonier P., 2007. Comparative use of field and laboratory mesocosms for in-stream nitrate uptake measurement. Ann. Limnol. - Int. J. Lim., 43, 41–51. [CrossRef] [EDP Sciences] [Google Scholar]
  • Turner B.L., Baxter R. and Whitton B.A., 2003. Nitrogen and phosphorus in soil solution and drainage streams in Upper Teesdale, northern England: implication of organic compounds for biological nutrient limitation. Sci. Tot. Environ., 314–316, 153–170. [Google Scholar]
  • Valett H.M., Dahm C.N., Campana M.E., Morrice J.A., Baker M.A. and Fellows C.S., 1997. Hydrologic influences on groundwater – surface water ecotones: Heterogeneity in nutrient composition and retention. J. N. Amer. Benthol. Soc., 16, 239–247. [CrossRef] [Google Scholar]
  • Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H. and Tilman D.G., 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl., 7, 737–750. [Google Scholar]
  • Wang H., Hondzo M., Xu C., Poole V. and Spacie A., 2003. Dissolved oxygen dynamics of streams draining an urbanized and agricultural catchment. Ecol. Model., 160, 145–161. [Google Scholar]
  • Young R.G. and Huryn A.D., 1998. Comment: Improvements to diurnal upstream-downstream dissolved oxygen change technique for determining whole stream metabolism in small streams. Can. J. Fish. Aquat. Sci., 55, 1784–1785. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.