Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 46, Number 4, 2010
Page(s) 233 - 239
DOI https://doi.org/10.1051/limn/2010024
Published online 25 October 2010
  • Allgaier M., Uphoff H., Felske A. and Wagner-Dobler I., 2003. Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl. Environ. Microbiol., 69, 5051–5059. [CrossRef] [PubMed] [Google Scholar]
  • Béjà O., Suzuki M.T., Heidelberg J.F., Nelson W.C., Preston C.M., Hamada T., Eisen J.A., Fraser C.M. and Delong E.F., 2002. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature, 415, 630–633. [CrossRef] [PubMed] [Google Scholar]
  • Brunberg A.K., 1999. Contribution of bacteria in the mucilage of Microcystis spp. (cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol. Ecol., 29, 13–22. [CrossRef] [Google Scholar]
  • Cottrell M.T., Mannino A. and Kirchman D.L., 2006. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl. Environ. Microbiol., 72, 557–564. [CrossRef] [PubMed] [Google Scholar]
  • Eiler A., 2006. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl. Environ. Microbiol., 72, 7431–7437. [CrossRef] [PubMed] [Google Scholar]
  • Harashima K., Kawazoe K., Yoshida I. and Kamata H., 1987. Light stimulated aerobic growth of Erythrobacter species OCh 114. Plant Cell Physiol., 28, 365–374. [Google Scholar]
  • Hu H.J. and Wei Y.X., 2006. The freshwater algae of China: Systematics, taxonomy and ecology, Scientific Press, China (in Chinese). [Google Scholar]
  • Hu Y., Du H., Jiao N.Z. and Zeng Y., 2006. Abundant presence of the gamma-like proteobacterial pufM gene in oxic seawater. FEMS Microbiol. Lett., 263, 200–206. [CrossRef] [PubMed] [Google Scholar]
  • Jiang H., Dong H., Yu B., Li Y., Ji S., Liu X. and Zhang C., 2007. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan Plateau. Environ. Microbiol., 9, 2603–2621. [CrossRef] [PubMed] [Google Scholar]
  • Jiang H., Dong H., Yu B., Ye Q., Shen J., Rowe H. and Zhang C., 2008. Dominance of putative marine benthic archaea in Qinghai Lake, northwestern China. Environ. Microbiol., 10, 2355–2367. [CrossRef] [PubMed] [Google Scholar]
  • Jiang H.C., Dong H.L., Yu B.S., Lv G., Deng S.C., Wu Y.J., Dai M.H. and Jiao N.Z., 2009. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiol. Ecol., 67, 268–278. [CrossRef] [PubMed] [Google Scholar]
  • Jiao N.Z., Zhang Y., Zeng Y.H., Hong N., Liu R.L., Chen F. and Wang P.X., 2007. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ. Microbiol., 9, 3091–3099. [CrossRef] [PubMed] [Google Scholar]
  • Jin X.C. and Tu Q.Y., 1990. Handbook of eutrophication investigation of lake (2nd edn.), China Environmental Science Press, Beijing, China (in Chinese). [Google Scholar]
  • Karl D.M., 2002. Microbiological oceanography – hidden in a sea of microbes. Nature, 415, 590–591. [CrossRef] [PubMed] [Google Scholar]
  • Karr E.A., Sattley W.M., Jung D.O., Madigan M.T. and Achenbach L.A., 2003. Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl. Environ. Microbiol., 69, 4910–4914. [CrossRef] [PubMed] [Google Scholar]
  • Kodama M., Doucette G.J. and Green D.H., 2006. Relationships between bacteria and harmful algae. In: Granéli E. and Turner J.T. (eds.), Ecology of harmful algae, 189, Springer-Verlag, Berlin Heidelberg, 243–255. [CrossRef] [Google Scholar]
  • Kolber Z.S., Van Dover C.L., Niederman R.A. and Falkowski P.G., 2000. Bacterial photosynthesis in surface waters of the open ocean. Nature, 407, 177–179. [CrossRef] [PubMed] [Google Scholar]
  • Kolber Z.S., Plumley F.G., Lang A.S., Beatty J.T., Blankenship R.E., VanDover C.L., Vetriani C., Koblížek M., Rathgeber C. and Falkowski P.G., 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science, 292, 2492–2495. [CrossRef] [PubMed] [Google Scholar]
  • Lafay B., Ruimy R., Detraubenberg C.R., Breitmayer V., Gauthier M.J. and Christen R., 1995. Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int. J. Syst. Bacteriol., 45, 290–296. [CrossRef] [PubMed] [Google Scholar]
  • Lami R., Cottrell M.T., Ras J., Ulloa O., Obernosterer I., Claustre H., Kirchman D.L. and Lebaron P., 2007. High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean. Appl. Environ. Microbiol., 73, 4198–4205. [CrossRef] [PubMed] [Google Scholar]
  • Mašín M., Nedoma J., Pechar L. and Koblížek M., 2008. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ. Microbiol., 10, 1988–1996. [CrossRef] [PubMed] [Google Scholar]
  • Nadkarni M., Martin F.E., Jacques N.A. and Hunter N., 2002. Determination of bacterial load by real-time PCR using a broad range (universal) probe and primer set. Microbiology, 148, 257–266. [PubMed] [Google Scholar]
  • Prokic I., Brummer F., Brigge T., Gortz H.D., Gerdts G., Schutt C., Elbrachter M. and Muller W.E.G., 1998. Bacteria of the genus Roseobacter associated with the toxic dinoflagellate Prorocentrum lima. Protist, 149, 347–357. [CrossRef] [PubMed] [Google Scholar]
  • Rinta-Kanto J.M., Ouellette A.J., Boyer G.L., Twiss M.R., Bridgeman T.B. and Wilhelm S.W., 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol., 39, 4198–4205. [Google Scholar]
  • Schwalbach M.S. and Fuhrman J.A., 2005. Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol. Oceanogr., 50, 620–628. [CrossRef] [Google Scholar]
  • Shiba T., 1991. Roseobacter litoralis gen. nov. sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst. Appl. Microbiol., 14, 140–145. [Google Scholar]
  • Tillett D. and Neilan B.A., 2000. Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J. Phycol., 36, 251–258. [CrossRef] [Google Scholar]
  • Waidner L.A. and Kirchman D.L., 2005. Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ. Microbiol., 7, 1896–1908. [CrossRef] [PubMed] [Google Scholar]
  • Waidner L.A. and Kirchman D.L., 2007. Aerobic anoxygenic phototrophic bacteria attached to particles in turbid maters of the Delaware and Chesapeake estuaries. Appl. Environ. Microbiol., 73, 3936–3944. [CrossRef] [PubMed] [Google Scholar]
  • Waidner L.A. and Kirchman D.L., 2008. Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene, pufM, in the Delaware estuary. Appl. Environ. Microbiol., 74, 4012–4021. [CrossRef] [PubMed] [Google Scholar]
  • Worm J. and Søndergaard M., 1998. Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquat. Microb. Ecol., 14, 19–28. [CrossRef] [Google Scholar]
  • Yurkov V.V. and Beatty J.T., 1998. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev., 62, 695–724. [PubMed] [Google Scholar]
  • Yurkov V.V. and Gorlenko V.M., 1990. Erythrobacter sibiricus sp. nov., a new freshwater aerobic species containing bacteriochlorophyll a. Microbiology, 59, 85–89. [Google Scholar]
  • Yurkova N., Rathgeber C., Swiderski J., Stackebrandt E., Beatty J.T., Hall K.J. and Yurkov V., 2002. Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol. Ecol., 40, 191–204. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.