Open Access
Issue
Int. J. Lim.
Volume 61, 2025
Article Number 2
Number of page(s) 13
DOI https://doi.org/10.1051/limn/2025001
Published online 06 February 2025
  • Baird W. 1845. Arrangements of the British Entomostraca, with a list of species, particularly noticing those which have as yet been discovered within the bounds of the club. Hist Berwickshire Nat Club 2: 145–148. [Google Scholar]
  • Bou C, Rouch R. 1967. Un nouveau champ de recherches sur la faune aquatique souterraine. CR Acad Sci 265: 369–370. [Google Scholar]
  • Boulton AJ, Datry T, Kasahara T, Mutz M, Stanford JA. 2010. Ecology and management of the hyporheic zone: stream-groundwater interactions of running waters and their floodplains. J North-Am Benthol Soc 29: 26–40. [CrossRef] [Google Scholar]
  • Broodbakker NW, Danielopol DL. 1982. The chaetotaxy of Cypridacea (Crustacea, Ostrocoda) limbs. Bijdr Dierkd 52: 103–120. [CrossRef] [Google Scholar]
  • Buffington JM, Tonina D. 2009. Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales, and rates of exchange. Geogr Compass 3: 1038–1062. [CrossRef] [Google Scholar]
  • Capderrey C. 2013. Effets de la géomorphologie des rivières en tresses sur les communautés d'invertébrés aquatiques et sur la structuration génétique des populations du crustacé isopode souterrain Proasellus walteri. PhD thesis, Université Claude Bernard Lyon 1. https://theses.hal.science/tel-01869733 [Google Scholar]
  • Capderrey C, Datry T, Foulquier A, Claret C, Malard F. 2013. Invertebrate distribution across nested geomorphic features in braided-river landscapes. Freshw Sci 32: 1188–1204. [CrossRef] [Google Scholar]
  • Claret C, Marmonier P, Dole-Olivier M-J, Castella E. 1999. Effects of management works on the interstitial fauna of floodplain aquatic systems (River Rhône, France). Biodiversity Conserv 8: 1179–1204. [CrossRef] [Google Scholar]
  • Cook PG. 2013. Estimating groundwater discharge to rivers from river chemistry surveys. Hydrol Process 27: 3694–3707. [CrossRef] [Google Scholar]
  • Cook PG, Lamontagne S, Berhane D, Clark JF. 2006. Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. Water Resour Res 42: 1–12. [Google Scholar]
  • Creuzé des Châtelliers M, Doledec S, Lafont M, Dole-Olivier M-J,Konecny L, Marmonier P. 2021. Are hyporheic oligochaetes efficient indicators of hydrological exchanges in river bed sediment? A test in a semi-natural and a regulated river. River Res Appl 37: 399–407. [CrossRef] [Google Scholar]
  • Danielopol DL. 1978. Ostracodes hypogés du Sud de la France. 1. Mixtacandona juberthiae. Int J Speleol 9: 235–249. [CrossRef] [Google Scholar]
  • Danielopol DL. 1978. Ostracodes hypogés du Sud de la France. 2. Pseudocandona simililampadis. Int J Speleol 10: 57–71. [CrossRef] [Google Scholar]
  • Danielopol DL. 1980. Sur la biologie de quelques Ostracodes Candoninae épigés et hypogés d'Europe. Bull Mus natl Hist nat, A, Zool Biol Ecol Anim 2: 471–506. [Google Scholar]
  • Danielopol DL, Hartmann G. 1986. Ostracoda: Part I: stygobiont ostracoda from inalnd subterranean waters. In Botosaneanu L. (ed.), Stygofauna Mundi. E. J. Brill/Dr. W. Backhuys, Leiden, 265–278. [CrossRef] [Google Scholar]
  • Dehedin A, Dole-Olivier M-J, Piscart C, Mimoun D, Bornette G, Marmonier P. 2013. Long-term changes and drying modality affect interstitial assemblages of alluvial wetlands. Wetlands 33: 537–550. [CrossRef] [Google Scholar]
  • Delachaux T. 1921. Un polychète d'eau douce cavernicole Troglochaetus beranecki nov. Gen. Nov. Spec. Bul Soc Scie Nat Neuchatel 45: 1–11. [Google Scholar]
  • Deutsch B, Mewes M, Liskow I, Voss M. 2006. Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Org Geochem 37: 1333–1342. [CrossRef] [Google Scholar]
  • Di Lorenzo T, Stoch F, Galassi DMP. 2013. Incorporating the hyporheic zone within the river discontinuum: longitudinal patterns of subsurface copepod assemblages in an Alpine stream. Limnologica 4: 288–296. [CrossRef] [Google Scholar]
  • Dole M-J, Chessel D. 1986. Stabilité physique et biologique des milieux interstitiels. Cas de deux stations du Haut-Rhône. Ann Limnol-Int J Lim 22: 69–81. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dole M, Coineau N. 1987. The Isopod Microcharon, abundant in interstitial waters of the East Lyonnais. M reginae n. sp., ecology and biogeography. Stygologia 3: 200–216. [Google Scholar]
  • Dole-Olivier M-J, Marmonier P. 1992. Patch distribution on interstitial communities: prevailing factors. Freshw Biol 27: 177–191. [CrossRef] [Google Scholar]
  • Dole-Olivier M-J, Creuzé des Châtelliers M, Marmonier P. 1993. Repeated gradients in subterranean landscape − example of the stygofauna in the alluvial floodplain of the Rhône River (France). Arch Hydrobiol 127: 451–471. [CrossRef] [Google Scholar]
  • Dole-Olivier M-J, Creuzé des Châtelliers M, Galassi DMP, Laffont M, Mermillod-Blondin F, Paran F, Gaur S, Marmonier P. 2022. Drivers of functional diversity in the hyporheic zone of a large river. Sci Total Environ 843: 156985. [CrossRef] [PubMed] [Google Scholar]
  • Dole-Olivier M-J, Malard F, Martin D, Lefébure T, Gibert J. 2009. Relationships between environmental variables and groundwater biodiversity at the regional scale. Freshw Biol 54: 797–813. [CrossRef] [Google Scholar]
  • Dole-Olivier M-J, Wawzyniak V, Creuzé des Châtelliers M, Marmonier P. 2019. Do thermal infrared (TIR) remote sensing and direct hyporheic measurements (DHM) similarly detect river-groundwater exchanges? Study along a 40 km-section of the Ain River (France). Sci Total Environ 646: 1097–1110. [CrossRef] [PubMed] [Google Scholar]
  • Eme D, Malard F, Konecny-Dupre L, Lefebure T, Douady CJ. 2013. Bayesian phylogeographic interferences reveal contrasting colonization dynamics among European groundwater isopods. Mol Ecol 22: 5685–5699. [CrossRef] [PubMed] [Google Scholar]
  • Eme D, Zagmajster M, Fiser C, Galassi DMP, Marmonier P, Stoch F, Cornu J-F, Oberdorff T, Malard F. 2015. Multi-causality and spatial non-stationarity in the determinants of groundwater crustacean diversity in Europe. Ecography 38: 531–540. [CrossRef] [Google Scholar]
  • Eme D, Zagmajster M, Delic T, Fiser C, Flot J-F, Konecny-Dupré L, Palsson S, Stoch F, Zaksek V, Douady CJ, Malard F. 2018. Do cryptic species matter in macoecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challange biodiversity determinants. Ecography, 41: 424–436. [CrossRef] [Google Scholar]
  • Gibert J, Ginet R, Mathieu J, Reygrobellet J-L, Seyed-Reihani A, Laurent R. 1977. Structure et fonctionnement des écosystèmes du Haut-Rhône Français IV.- Le peuplement des eaux phréatiques; premiers résultats. Ann Limnol −Inte J Limn 13: 83–97. [CrossRef] [EDP Sciences] [Google Scholar]
  • Graillot D, Paran F, Bornette G, Marmonier P, Piscart C, Cadilhac L. 2014. Coupling groundwater modelling and biological indicators for identifying river-aquifer exchanges. SpringerPlus 3: 68. [CrossRef] [PubMed] [Google Scholar]
  • Grasby SE, Hutcheon I, McFarland L. 1999. Surface-water-groundwater interaction and the influence of ion exchange reactions on river chemistry. Geology 27: 223–226. [CrossRef] [Google Scholar]
  • Guignot F. 1925. Description d'un Siettitia nouveau du Midi de la France [Col. Dytiscidae]. Bull Soc Entomol Fra. 30: 23–24. [Google Scholar]
  • Hahn HJ, Fuchs A. 2009. Distribution patterns of groundwater communities across aquifer types in south-western Germany. Freshw Biol 54: 848–860. [CrossRef] [Google Scholar]
  • Hancock PJ, Boulton AJ, Humphreys WF. 2005. Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrol J 13: 98–111. [Google Scholar]
  • Hoehn E, 2001. Exchange processes between rivers and ground waters − the hydrological and geochemical approach. In: Griebler C, Danielopol DL, Gibert J, Nachtnebel HP, Notenboom L. (Eds.) [Google Scholar]
  • Hynes HBN. 1975. The stream and its valley. Verh Internat Verein Limnol 19: 1–15. [Google Scholar]
  • Juget J. 1959. Recherches sur la faune aquatique de deux grottes du Jura méridional français: la grotte de la Balme (Isèreà et la grotte de Corvessiat (Ain). Annls Speleol 14: 391–401. [Google Scholar]
  • Karanovic I, Lee W. 2012. A review of candonid ostracods (Crustacea: Ostracoda: Podocopida) from East Asia, with descriptions of five new species from South Korea. Zootaxa 3368: 7–49. [Google Scholar]
  • Kaufmann A. 1900. Cypriden und Darwinuliden der Schweiz. Rev Suisse Zool 8: 209–423. [CrossRef] [Google Scholar]
  • Klie W. 1934. Zwei neue subterrane Ostracoden der Gattung Candona. Zool Anz 106: 193–199. [Google Scholar]
  • Klie W. 1936. Neue Candoninae (Ostr.) aus dem grundwasser von Belgien. Bull Mus roy Hist nat Belg 12: 1–13. [Google Scholar]
  • Klie W. 1937. Weitere Ostracoden aus dem Grundwasser von Belgien. Bull Mus roy Hist nat Belg 13: 1–6. [Google Scholar]
  • Klie W. 1938. Ostracoden aus dem Grundwasser des oberrheinischen Tiefebene. Zeitschrift für wissenschaftliche Zoologie. Arch Naturgesch, Abd B 7: 1–28. [Google Scholar]
  • Latreille PA. 1802. Histoire naturelle, générale et particulière des crustacés et des insectes. Famille naturelle des genres. Dufart Imprimeur, Paris, 467 p. [Google Scholar]
  • Leruth R. 1939. Biologie du domaine souterrain et faune Cavernicole de la Belgique. Mem Mus roy Hist nat Belg 87: 1–506. [Google Scholar]
  • Ma S, Yu N. 2018. Freshwater ostracods (Crustacea) from Tiantong National Forest Park and Dongqian Lake, eastern China, with descriptions of two new species. J Nat Hist 52: 1825–1868. [CrossRef] [Google Scholar]
  • Malard F, Ferreira D, Dolédec S, Ward JV. 2003. Influence of groundwater upwelling on the distribution of the hyporheos in a headwater river flood plain. Arch Hydrobiol 157: 89–116. [CrossRef] [Google Scholar]
  • Malard F, Tockner K, Ward JV. 1999. Shifting dominance of subcatchment water sources and flow paths in a glacial floodplain, Val Roseg, Switzerland. Arct Antact Alp Res 31: 135–150. [CrossRef] [Google Scholar]
  • Malard F, Tockner K, Dole-Olivier M-J, Ward JV. 2002. A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshw Biol 47: 621–640. [CrossRef] [Google Scholar]
  • Marmonier P. 1988. Biocénoses interstitielles et circulation des eaux dans le sous-écoulement d'un chenal aménagé du Haut-Rhône français. PhD Thesis, Université Claude Bernard Lyon 1. https://theses.fr/1988LYO10155 [Google Scholar]
  • Marmonier P, Creuze des Chatelliers M. 1992. Biogeography of benthic and interstitial ostracods (Crustacea) of the Rhône River (France). J Biogeogr 19: 693–704. [CrossRef] [Google Scholar]
  • Marmonier P, Creuzé des Châtelliers M, Dole-Olivier M-J, Radacovitch O, Mayer A, Chapuis H, Graillot D, Re-Bahuaud J, Johannet A, Cadilhac L. 2020a. Are surface water characteristics efficient to locate hyporheic biodiversity hotspots? The example of a karstic Mediterranean river. Sci Total Environ 738: 139930. [CrossRef] [PubMed] [Google Scholar]
  • Marmonier P, Creuzé des Châtelliers M, Dole-Olivier M-J, Johannet A, Re-Bahuaud J, Chapuis H, Graillot D, Cadilhac L. 2020b. Les invertébrés aquatiques indicateurs des relations entre le karst et la rivière. Exemple de la Cèze. Karstologia 75 : 51–58. [CrossRef] [Google Scholar]
  • Marmonier P, Dole-Olivier M.-J, Creuzé des Châtelliers M, Paran F, Graillot D, Winiarski T, Konecny-Dupré L, Navel S, Cadilhac L. 2019. Does spatial heterogeneity of hyporheic fauna vary similarly with natural and artificial changes in braided river width? Sci Total Environ 689: 57–69. [CrossRef] [PubMed] [Google Scholar]
  • Martens K. 1987. Homology and functional morphology of the sexual dimorphism in the antenna of Sclerocypris Sars, 1924 (Crustacea, Ostracoda, Megalocypridinae). Bijdr Dierkd 57: 183–190. [CrossRef] [Google Scholar]
  • Martin P, De Broyer C, Fiers F, Michel G, Sablon R, Wouters K. 2009. Biodiversity of Belgian groundwater fauna in relation to environmental conditions. Freshw Biol 54: 814–829. [CrossRef] [Google Scholar]
  • Meisch C. 1996. Contribution to the taxonomy of Pseudocandona and four related genera, with the description of Schellencandona nov. gen. a list of the Candoninae genera, and a key to the European genera of the subfamily (Crustacea, Ostracoda). Bull Soc Nat Luxemb 97: 211–238. [Google Scholar]
  • Meisch C. 2000. Freshwater Ostracoda of western and central Europe. Sußwasserfauna von Mitteleuropa series (8/3), Spektrum Akademischer Verlag Germany, 522 p. [Google Scholar]
  • Namiotko T, Marmonier P, Danielopol DL. 2005. Cryptocandona kieferi (Crustacea, Ostracoda): redescription, morphological variability, geographical distribution. Vie Milieu 55: 91–108. [Google Scholar]
  • Olsen DA, Townsend CR. 2005. Flood effects on invertebrates, sediments and particulate organic matter in the hyporheic zone of a gravel-bed stream. Freshw Biol 50: 839–853. [CrossRef] [Google Scholar]
  • Petkovski TK. 1962. Beitrag zur Kenntnis der Ostracoden-fauna Mitteldeutschland (Thuringen-Sachsen). Acta Mus Maced Sc Nat 8: 117–132. [Google Scholar]
  • Reygrobellet J-L. 1986. Recherches interdisciplinaires sur les écosystèmes de la basse vallée de l'Ain (France). Importance des flux souterrains dans la caractérisation fonctionnelle du lit principal. Doc Carto Ecol 29: 123–133. [Google Scholar]
  • Rogulj B, Marmonier P, Lattinger R, Danielopol D. 1994. Fine-scale distribution of hypogean Ostracoda in the interstitial habitats of the Rivers Sava and Rhone. Hydrobiologia 287: 19–28. [CrossRef] [Google Scholar]
  • Sars GO. 1866. Oversigt af Norges marine ostracoder. Det Norske Videnskaps-Akademi Forhandlingar, 130 p. [Google Scholar]
  • Seyed‑Reihani A, Ginet R, Reygrobellet J-L. 1982. Structure et fonctionnement des écosystèmes du Haut‑Rhône français. XXX: Le peuplement de trois stations interstitielles dans la plaine de Miribel‑Jonage (vallée du Rhône en amont de Lyon), en relation avec leur alimentation hydrogéologique. Rev Sci Eau 1: 163–174. [Google Scholar]
  • Smith RJ. Kamiya T. 2006. Six new species of fresh and brackish water ostracods (Crustacea) from Yakushima, Southern Japan. Hydrobiologia 559: 331–355. [CrossRef] [Google Scholar]
  • Stoch F, Fiasca B, Di Lorenzo T, Porfirio S, Petitta M, Galassi DMP. 2016. Exploring copepod distribution patterns at three nested spatial scales in a spring system. Habitat partitioning and potential for hydrological bioindication. J Limnol 75: 1–13. [Google Scholar]
  • Sywula T. 1976. Notes on Ostracoda 16. New species of Ostracoda (Crustacea) from subterranean waters of Poland. Bull Pol Acad Sci Sci biol, 24: 271–278. [Google Scholar]
  • Ward JV, Malard F, Tockner K, Uehlinger U. 1999. Influence of ground water on surface water conditions in a glacial food plain of the Swiss Alps. Hydrol Process 13: 277–293. [CrossRef] [Google Scholar]
  • Wawrzyniak V, Piégay H, Allemand P, Vaudor L, Goma R, Grandjean P. 2016. Effects of geomorphology and groundwater level on the spatio-temporal variability of riverine cold water patches assessed using thermal infrared (TIR) remote sensing. Remote Sens Environ 175: 337–348. [CrossRef] [Google Scholar]
  • Williams D, Hynes HBN. 1974. The occurrence of benthos deep in the substratum of a stream. Freshw Biol 4: 233–256. [CrossRef] [Google Scholar]
  • Wolf JP. 1920. Die ostracoden der umgebung von Basel. Arch Naturgesch 85: 1–100. [Google Scholar]
  • Zagmajster M, Eme D, Marmonier P, Stoch F, Cornu J-F, Malard F. 2014. Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Global Ecol Biogeogr 23: 1135–1145. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.