Open Access
Review
Issue |
Int. J. Lim.
Volume 61, 2025
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/limn/2024025 | |
Published online | 09 January 2025 |
- Babourina O, Rengel Z. 2010. Ion Transport in Aquatic Plants In: Waterlogging Signalling and Tolerance in Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 221–238. [Google Scholar]
- Bartoli CG, Gomez F, Gergoff G, Guiamét JJ, Puntarulo S. 2005. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J Exp Bot 56: 1269–1276. [CrossRef] [PubMed] [Google Scholar]
- Björn LO, Middleton BA, Germ M, Gaberščik A. 2022. Ventilation systems in wetland plant species. Diversity 14: 1–21. [Google Scholar]
- Blom CWPM, Voesenek LACJ. 1996. Flooding: the survival strategies of plants. TREE 11: 290–295. [Google Scholar]
- Bodkin PC, Spence DHN, Weeks DC. 1980. Photoreversible control of heterophylly in Hippuris vulgaris L. New Phytol 84: 533–542. [CrossRef] [Google Scholar]
- Boeger MRT, Poulson ME. 2003. Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Scrophulariaceae) under different flow regimes. Aquat Bot 75: 123–135. [CrossRef] [Google Scholar]
- Braendle R, Crawford RMM. 1999. Plants as amphibians. Perspect Plant Ecol Evol Syst 2: 56–78. [CrossRef] [Google Scholar]
- Bristow JM. 1969. The effects of carbon dioxide on the growth and development of amphibious plants. Can J Bot 47: 1803–1807. [CrossRef] [Google Scholar]
- Carter MF, Grace JB. 1990. Relationships between flooding tolerance, life history, and short-term competitive performance in three species of Polygonum. Am J Bot 77: 381–387. [CrossRef] [Google Scholar]
- Deschamp PA, Cooke TJ. 1984. Causal mechanisms of leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. Am J Bot 71: 319–329. [CrossRef] [Google Scholar]
- Evans DE. 2004. Aerenchyma formation. New Phytol. 161: 35–49. [CrossRef] [Google Scholar]
- Gaberščik A. 1993. Measurements of apparent CO2 flux in amphibius plant Polygonum amphibium L. growing over environmental gradient. Photosyntetica 29: 159–168. [Google Scholar]
- Gaberščik A, Martinčič A. 1992. Spreminjanje lastnosti listov vodne dresni (Polygonum amphibium L.) v gradientu kopno/voda. Biološki Vestn Glas Slov Biol 40: 1–11. [Google Scholar]
- Germ M, Gaberščik A. 2003. Comparison of aerial and submerged leaves in two amphibious species, Myosotis scorpioides and Ranunculus trichophyllus. Photosynthetica 41: 91–96. [CrossRef] [Google Scholar]
- Germ M, Mazej Z, Gaberščik A, Trošt Sedej T. 2006. The response of Ceratophyllum demersum L. and Myriophyllum spicatum L. to reduced, ambient, and enhanced ultraviolet-B radiation. Hydrobiologia 570: 47–51. [CrossRef] [Google Scholar]
- Goliber TE, Feldman LJ. 1990. Developmental analysis of leaf plasticity in the heterophyllous aquatic plant Hippuris vulgaris. Am J Bot 77: 399–412. [CrossRef] [Google Scholar]
- Haslam SM. 1987. River Plants of Western Europe: The Macrophytic Vegetation of Watercourses of the European Economic Community. Cambridge, UK: Cambridge University Press. [Google Scholar]
- Henry C, John GP, Pan R, Bartlett MK, Fletcher LR, Scoffoni C, Sack L. 2019. A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Nat Commun 10: 1–9. [Google Scholar]
- Hutchinson GE. 1975. A treatise on limnology. New York, London, Sydney, and Toronto: John Wiley & Sons. [Google Scholar]
- Jackson MB, Armstrong W. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1: 274–287. [CrossRef] [Google Scholar]
- Jin S, Ibrahim M, Muhammad S, Khan S, Li G. 2020. Light intensity effects on the growth and biomass production of submerged macrophytes in different water strata. Arab J Geosci 13: 1–7. [CrossRef] [Google Scholar]
- Jung J, Lee SC, Choi HK. 2008. Anatomical patterns of aerenchyma in aquatic and wetland plants. J. Plant Biol 51: 428–439. [CrossRef] [Google Scholar]
- Kane ME, Albert LS. 1987. Abscisic acid induces aerial leaf morphology and vasculature in submerged Hippuris vulgaris L. Aquat Bot 28: 81–88. [CrossRef] [Google Scholar]
- Kawa D. 2021. The shapeshifting legend of amphibious plants explained. Plant Cell 33: 3181–3182. [CrossRef] [PubMed] [Google Scholar]
- Kim J, Joo Y, Kyung J, Jeon M, Park JY, Lee HG, Chung DS, Lee E, Lee I. 2018. A molecular basis behind heterophylly in an amphibious plant, Ranunculus trichophyllus. PLoS Genet 14: 1–21. [Google Scholar]
- Klančnik K, Pančić M, Gaberščik A. 2014. Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiologia 737: 121–130. [CrossRef] [Google Scholar]
- Koga H, Kojima M, Takebayashi Y, Sakakibara H, Tsukaya H. 2021. Identification of the unique molecular framework of heterophylly in the amphibious plant Callitriche palustris L. Plant Cell 33: 3272–3292. [CrossRef] [PubMed] [Google Scholar]
- Larcher W. 2003. Physiological Plant Ecology. Berlin, Heidelberg: Springer, 4th edition. [CrossRef] [Google Scholar]
- Li G, Hu S, Hou H, Kimura S. 2019. Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants. Plants 8: 420. [CrossRef] [PubMed] [Google Scholar]
- Maberly SC, Madsen TV. 2002. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct Plant Biol 29: 393. [CrossRef] [PubMed] [Google Scholar]
- Maberly SC, Spence DHN. 1989. Photosynthesis and photorespiration in freshwater organisms: amphibious plants. Aquat Bot 34: 267–286. [CrossRef] [Google Scholar]
- Madsen TV, Sand-Jensen K. 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquat Bot 41: 5–40. [CrossRef] [Google Scholar]
- Manolaki P, Mouridsen MB, Nielsen E, Olesen A, Jensen SM, Lauridsen TL, Baattrup-Pedersen A, Sorrell BK, Riis T. 2020. A comparison of nutrient uptake efficiency and growth rate between different macrophyte growth forms. J Environ Manage 274: 111181. [Google Scholar]
- Murphy LR, Barroca J, Franceschi VR, Lee R, Roalson EH, Edwards GE, Ku MSB. 2007. Diversity and plasticity of C4 photosynthesis in Eleocharis (Cyperaceae). Funct Plant Biol 34: 571. [CrossRef] [PubMed] [Google Scholar]
- Nielsen SL. 1993. A comparison of aerial and submerged photosynthesis in some Danish amphibious plants. Aquat Bot 45: 27–40. [CrossRef] [Google Scholar]
- Nielsen SL, Sand-Jensen K. 1991. Variation in growth rates of submerged rooted macrophytes. Aquat Bot 39: 109–120. [Google Scholar]
- Obermeier WA, Lehnert LW, Kammann CI, Müller C, Grünhage L, Luterbacher J, Erbs M, Moser G, Seibert R, Yuan N, et al. 2017. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat Clim Chang 7: 137–141. [CrossRef] [Google Scholar]
- Pedersen. 1993. Long-distance water transport in aquatic plants. Plant Physiol 103: 1369–1375. [CrossRef] [PubMed] [Google Scholar]
- Pedersen O, Colmer TD, Sand-Jensen K. 2013. Underwater photosynthesis of submerged plants − recent advances and methods. Front Plant Sci 4: 1–19. [CrossRef] [PubMed] [Google Scholar]
- Pedersen O, Sand-Jensen K. 1993. Water transport in submerged macrophytes. Aquat Bot 44: 385–406. [CrossRef] [Google Scholar]
- Poschenrieder C, Fernández JA, Rubio L, Pérez L, Terés J, Barceló J. 2018. Transport and use of bicarbonate in plants: current knowledge and challenges ahead. Int J Mol Sci 19: 1–25. [Google Scholar]
- Prins HBA, Guia MB de. 1986. Carbon source of the water soldier, Stratiotes aloides L. Aquat Bot 26: 225–234. [CrossRef] [Google Scholar]
- Rascio N. 2002. The underwater life of secondarily aquatic plants: Some problems and solutions. CRC Crit Rev Plant Sci 21: 401–427. [CrossRef] [Google Scholar]
- Raven J. 1996. Into the voids: the distribution, function, development and maintenance of gas spaces in plants. Ann Bot 78: 137–142. [CrossRef] [Google Scholar]
- Rich SM, Ludwig M, Colmer TD. 2012. Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii. Ann Bot 110: 405–414. [CrossRef] [PubMed] [Google Scholar]
- Rich SM, Ludwig M, Pedersen O, Colmer TD. 2011. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize: implications for root function during flooding. New Phytol 190: 311–319. [CrossRef] [PubMed] [Google Scholar]
- Ridge I. 1987. Ethylene and growth control in amphibious plants In: Crawford RM., Ed., Plant Life in Aquatic and Amphibious Habitats. Oxford: Blackwells Scientific Publications, pp. 53–75. [Google Scholar]
- Robe WE, Griffiths H. 2000. Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uniflora, during the transition from aquatic to dry terrestrial environments. Plant Cell Environ 23: 1041–1054. [CrossRef] [Google Scholar]
- Sakagami J-I, Joho Y, Sone C. 2013. Complete submergence escape with shoot elongation ability by underwater photosynthesis in African rice, Oryza glaberrima Steud. F Crop Res 152: 17–26. [CrossRef] [Google Scholar]
- Sand-Jensen K, Pedersen MF, Nielsen SL. 1992. Photosynthetic use of inorganic carbon among primary and secondary water plants in streams. Freshw Biol 27: 283–293. [CrossRef] [Google Scholar]
- Sand-Jensen K, Riis T, Martinsen KT. 2022. Photosynthesis, growth, and distribution of plants in lowland streams—a synthesis and new data analyses of 40 years research. Freshw Biol 67: 1255–1271. [CrossRef] [Google Scholar]
- Sarneel JM. 2013. The dispersal capacity of vegetative propagules of riparian fen species. Hydrobiologia 710: 219–225. [CrossRef] [Google Scholar]
- Sosnová M, Diggelen R van, Klimešová J. 2010. Distribution of clonal growth forms in wetlands. Aquat Bot 92: 33–39. [CrossRef] [Google Scholar]
- Šraj-Kržič N, Pongrac P, Regvar M, Gaberščik A. 2009. Photon-harvesting efficiency and arbuscular mycorrhiza in amphibious plants. Photosynthetica 47: 61–67. [CrossRef] [Google Scholar]
- Šraj Kržič N, Gaberščik A. 2005. Photochemical efficiency of amphibious plants in an intermittent lake. Aquat Bot 83: 281–288. [CrossRef] [Google Scholar]
- Tena G. 2023. Hydathodes as security gates. Nat Plants 9: 194–194. [CrossRef] [PubMed] [Google Scholar]
- Veen H van, Sasidharan R. 2021. Shape shifting by amphibious plants in dynamic hydrological niches. New Phytol 229: 79–84. [CrossRef] [PubMed] [Google Scholar]
- Visser EJW, Bögemann GM. 2006. Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. New Phytol 171: 305–314. [CrossRef] [PubMed] [Google Scholar]
- Voesenek LAC, Blom CWPM. 1999. Stimulated shoot elongation: a mechanism of semiaquatic plants to avoid submergence stress. In: Lerner HR, Ed., Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization. New York: New York, NY, USA: Marcel Dekker Inc, pp. 431–448. [Google Scholar]
- Wickell D, Kuo L-Y, Yang H-P, Dhabalia Ashok A, Irisarri I, Dadras A, Vries S de, Vries J de, Huang Y-M, Li Z. et al. 2021. Underwater CAM photosynthesis elucidated by Isoetes genome. Nat Commun 12: 6348. [CrossRef] [PubMed] [Google Scholar]
- Woudenberg S, Renema J, Tomescu AMF, Rybel B. De, Weijers D. 2022. Deep origin and gradual evolution of transporting tissues: Perspectives from across the land plants. Plant Physiol 190: 85–99. [CrossRef] [PubMed] [Google Scholar]
- Yin L, Li W, Madsen TV, Maberly SC, Bowes G. 2017. Photosynthetic inorganic carbon acquisition in 30 freshwater macrophytes. Aquat Bot 140: 48–54. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.