Int. J. Lim.
Volume 60, 2024
Special issue - Biology and Management of Coregonid Fishes - 2023
Article Number 8
Number of page(s) 16
Published online 04 July 2024
  • Almack K, Dunlop ES, Lauzon R, Nadjiwon S, Duncan AT. 2023. Building trust through the Two-Eyed Seeing approach to joint fisheries research. J Great Lakes Res 49: S46–S57. [Google Scholar]
  • Bégout Anras ML, Cooley PM, Bodaly RA, Anras L, Fudge RJ. 1999. Movement and habitat use by lake whitefish during spawning in a boreal lake: integrating acoustic telemetry and Geographic Information Systems. T Am Fish Soc 128: 939–952. [Google Scholar]
  • Biggs CR, Heyman WD, Farmer NA, Kobara S, Bolser DG, Robinson J, Lowerre-Barbieri SK, Erisman BE. 2021. The importance of spawning behavior in understanding the vulnerability of exploited marine fishes in the U.S. Gulf of Mexico. PeerJ 9: e11814. [CrossRef] [PubMed] [Google Scholar]
  • Binder TR, Riley SC, Holbook CM, Hansen MJ, Bergstedt RA, Bronte CR, He J, Krueger CC. 2016. Spawning site fidelity of wild and hatchery lake trout (Salvelinus namaycush) in northern Lake Huron. Can J Fish Aquat Sci 73: 18–34. [Google Scholar]
  • Binder TR, Farha SA, Thompson HT, Holbrook CM, Bergstedt RA, Riley SC, Bronte CR, He J, Krueger CC. 2018. Fine-scale acoustic telemetry reveals unexpected lake trout, Salvelinus namaycush, spawning habitats in northern Lake Huron, North America. Ecol Freshw Fish 27: 594–605. [CrossRef] [Google Scholar]
  • Binder TR, Marsden JE, Kornis MS, Goetz FW, Hellström G, Bronte CR, Gunn JM, Krueger CC. 2021. Movement ecology and behavior, in: A.M. Muir, C.C. Krueger, M.J. Hansen, S.C. Riley(eds.), The lake charr Salvelinus namaycush: Biology, Ecology, Distribution, and Management, Fish and Fisheries Series vol. 39. Cham: Springer, pp. 203–252. [Google Scholar]
  • Bivand R, Lewin-Koh N. 2022. Maptools: Tools for Handling Spatial Objects [Internet]. Available from: [Accessed 2023 Mar 15] [Google Scholar]
  • Blanchfield PJ, Ridgway MS. 2023. Post-spawning defence by male brook charr is linked to perceived paternity. Environ Biol Fish 106: 957–968. [CrossRef] [Google Scholar]
  • Bodaly RA. 1986. Biology, exploitation and culture of coregonid fishes in Canada. Arch Hydrobiol Beih 22: 1–30. [Google Scholar]
  • Brenden TO, Ebener MP, Sutton TM, Jones ML, Arts MT, Johnson TB, Koops MA, Wright GM, Faisal M. 2010. Assessing the health of lake whitefish populations in the Laurentian Great Lakes: Lessons learned and research recommendations. J Great Lakes Res 36: 135–139. [Google Scholar]
  • Burlakova LE, Karatayev AY, Karatayev VA. 2012. Invasive mussels induce community changes by increasing habitat complexity. Hydrobiologia 685: 121–134. [CrossRef] [Google Scholar]
  • Coates JH, Hovel KA, Butler JL, Klimley PA, Morgan SG. 2013. Movement and home range of pink abalone Haliotis corrugate: implications for restoration and population recovery. Mar Ecol Prog Ser 486: 189–201. [CrossRef] [Google Scholar]
  • Cottrill A., Dunlop ES, Lenart S, He J. 2020. Status of Whitefishes and Ciscoes in Lake Huron in 2018. In: S.C. Riley, M.P. Ebener (eds.), The State of Lake Huron in 2018. Available from [Accessed 2022 Feb 20] [Google Scholar]
  • Cunningham KE, Dunlop ES. 2023. Declines in lake whitefish larval densities after dreissenid mussel establishment in Lake Huron. J Great Lakes Res 49: 491–505. [Google Scholar]
  • Dabrowski KR. 1981. The spawning and early life history of the pollan (Coregonus pollan Thompson) in Lough Neagh, Northern Ireland. Int Rev Hydrobiol 66: 299–326. [CrossRef] [Google Scholar]
  • Dahl KA, Patterson WF. 2020. Movement, home range, and depredation of invasive lionfish revealed by fine-scale acoustic telemetry in the northern Gulf of Mexico. Mar Biol 167: 111. [CrossRef] [Google Scholar]
  • Dean MJ, Hoffman WS, Zemeckis DR, Armstrong MP. 2014. Fine-scale diel and gender-based patterns in behaviour of Atlantic cod (Gadus morhua) on a spawning ground in the Western Gulf of Maine. ICES J Mar Sci 71: 1474–1489. [CrossRef] [Google Scholar]
  • Duncan AT, Lauzon R and Harpur C. 2023. An investigation into Saugeen Ojibway Nation-based ecological knowledge on the ciscoes (Coregonus spp.) of Lake Huron. J Great Lakes Res 49: S138– S147. [Google Scholar]
  • Ebener MP, Copes FA. 1985. Population statistics, yield estimates, and management considerations for two Lake Whitefish stocks in Lake Michigan. N Am J Fish Manage 5: 435–448. [CrossRef] [Google Scholar]
  • Ebener P, Kinnunen RE, Mohr LC, Schneeberger PJ, Hoyle JA, Peeters P. 2008. Management of commercial fisheries for lake whitefish in the Laurentian Great Lakes of North America, In: M.G. Schechter, W.W. Taylor, N.J. Leonard (eds.), International governance of fisheries ecosystems: learning from the past, finding solutions for the future vol. 62. Bethesda, Maryland: American Fisheries Society Symposium pp. 99–143. [Google Scholar]
  • Ebener MP, Brenden TO, Wright GM, Jones ML, Faisal M. 2010. Spatial and temporal distributions of Lake Whitefish spawning stocks in northern lakes Michigan and Huron, 2003–2006. J Great Lakes Res 36 (Suppl. 1): 38–51. [CrossRef] [Google Scholar]
  • Ebener MP, Dunlop ES and Muir AM. 2021. Declining recruitment of Lake Whitefish to fisheries in the Laurentian Great Lakes: management considerations and research priorities. Available from 2021-01.pdf [Accessed 2022 Aug 14] [Google Scholar]
  • Eckmann R. 1991. A hydroacoustic study of the pelagic spawning behaviour of whitefish (Coregonus lavaretus) in Lake Constance. Can J Fish Aquat Sci 48: 995–1002. [Google Scholar]
  • Esteve M. 2005. Observations of spawning behaviour in Salmoninae: Salmo, Oncorhynchus and Salvelinus. Rev Fish Biol Fisher 15: 1–21. [Google Scholar]
  • Fera SA, Rennie MD, Dunlop ES. 2015. Cross-basin analysis of long-term trends in the growth of lake whitefish in the Laurentian Great Lakes. J Great Lakes Res 41: 1138–1149. [Google Scholar]
  • First Nations Information Governance Centre. n.d. “The First Nations Principles of OCAP®”. OCAP® is a registered trademark of the First Nations Information Governance Centre. Retrieved from [Google Scholar]
  • Ford BS, Higgins PS, Lewis AF, Cooper KL, Watson TA, Gee CM, Ennis GL, Sweeting RL. 1995. Literature reviews of the life history, habitat requirements and mitigation/compensation strategies for thirteen sport fish species in the Peace, Liard and Columbia river drainages of British Columbia. Can MS Rep Fish Aquat Sci. 2321 Available from: 192246.pdf ( [ Accessed 2023 Dec 05] [Google Scholar]
  • Fox J, Weisberg S. 2019. An R Companion to Applied Regression, Third edition. Thousand Oaks, CA: Sage. Available from: [Accessed 2022 Jan 23] [Google Scholar]
  • Gatch AJ, Gorsky D, Weidel BC, Biesinger ZF, Connerton MJ, Davis C, Lachance H, Malley BP. 2023. Seasonal habitat utilization provides evidence for site fidelity during both spawn and non-spawning seasons in Lake Ontario cisco Coregonus artedi. J Great Lakes Res 49: 1045–1058. [CrossRef] [Google Scholar]
  • Gobin J, Lester NP, Cottrill A, Fox MG, Dunlop ES. 2015. Trends in growth and recruitment of Lake Huron lake whitefish during a period of ecosystem change, 1985 to 2012. J Great Lakes Res 41: 405–414. [CrossRef] [Google Scholar]
  • Gobin J, Duncan AT and Lauzon R. 2023. Saugeen Ojibway Nation community input and action: Initiating a two-eyed seeing approach for dikameg (Coregonus clupeaformis) in Lake Huron. J Great Lakes Res 49: S160– S171. [Google Scholar]
  • Goodyear CS, Edsall TA, Ormsby DM, Dempsey O, Moss GD, Polanski PE. 1982. Atlas of the spawning and nursery areas of Great Lakes fishes. [Internet] U.S. Fish Wildl. Serv. Washington, DC. FWS/OBS-82/52. Available from: [Accessed 2022 Apr 03] [Google Scholar]
  • Gorsky D, Zydlewski J, Basley D. 2012. Characterizing seasonal habitat use and diel vertical activity of lake whitefish in Clear Lake, Maine, as determined with acoustic telemetry. T Am Fish Soc 141: 761–771. [Google Scholar]
  • Hart JL. 1930. The spawning and early life history of the whitefish, Coregonus clupeaformis (Mitchell), in the Bay of Quinte, Ontario. Contrib Canadian Biol Fish. 6: 167–214. [Google Scholar]
  • Hayden TA, Binder TR, Holbrook CM, Vandergoot CS, Fielder DG, Cooke SJ, Dettmers JM, Krueger CC. 2018. Spawning site fidelity and apparent annual survival of walleye (Sander vitreus) differ between a Lake Huron and Lake Erie tributary. Ecol Fresh Fish 27: 339–349. [CrossRef] [Google Scholar]
  • Herbst SJ, Marsden JE and Lantry BF. 2013. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four great lakes following dreissenid invasions. Trans Am Fish Soc 142: 388–398. [Google Scholar]
  • Higgins SN, Vander Zanden MJ. 2010. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecol Monogr 80: 179–196. [CrossRef] [Google Scholar]
  • Holbrook CM, Hayden TA and Binder TR. 2021. glatos: a package for the Great Lakes Acoustic Telemetry Observation System. R Package version 0.6.2. [Internet] Available from: [ Accessed 2021 Nov 21] [Google Scholar]
  • Johnson L. 1980. The arctic charr, Salvelinus alpinus, in E.K. Balon (ed.), Charrs, Salmonid Fishes of the genus Salvelinus. The Hague: Dr W. Junk Publishers, pp. 15–98. [Google Scholar]
  • Karatayev AY, Burlakova LE and Padilla DK. 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J Shellfish Res 16: 187–203. [Google Scholar]
  • Karjalainen J, Marjomäki T. 2018. Communal pair spawning behaviour of vendace (Coregonus albula) in the dark. Ecol Fresh Fish 27: 542–548. [CrossRef] [Google Scholar]
  • Koch F, Wieser W. 1983. Partitioning of energy in fish: Can reduction of swimming activity compensate for the cost of production? J Exp Biol 107: 141–146. [CrossRef] [Google Scholar]
  • Krebs JR, Davies NB. 1993. An introduction to behavioural ecology. 3rd ed. Malden, MA: Blackwell Scientific Publications. [Google Scholar]
  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2022. lmerTest Package: Tests in linear mixed effects models. Available from: [Accessed 2022 Jan 28] [Google Scholar]
  • Leggett WC. 1977. The ecology of fish migrations. Ann Rev Ecol Syst 8: 285–308. [Google Scholar]
  • Lennox RJ, Aarestrup K, Alós J, Arlinghaus R, Aspillaga E, Bertram MG, Birnie-Gauvin K, Brodin T, Cooke SJ, Dahlmo LS, Dhellemmes F, Gjelland KØ, Hellström G, Hershey H, Holbrook C, Klefoth T, Lowerre-Barbieri S, Monk CT, Nilsen CI, Pauwels I, Pickholtz R, Prchalová M, Reubens J, Říha M, Villegas-Ríos D, Vollset KW, Westrelin S, Baktoft H. 2023. Positioning aquatic animals with acoustic transmitters. Meth Ecol Evol 14: 2514–2530. [Google Scholar]
  • Li Y, Bence JR, Brenden TO. 2014. An evaluation of alternative assessment approaches for intermixing fish populations: a case study with Great Lakes lake whitefish. ICES J Mar Sci 72: 70–81. [Google Scholar]
  • Luczynski M. 1986. Review on the biology, exploitation, rearing and management of coregonid fishes in Poland. Arch Hydrobiol 22: 115–140. [Google Scholar]
  • Madenjian CP, O’Connor DV, Pothoven SA, Schneeberger PJ, Rediske RR, O’Keefe JP, Bergstedt RA, Argyle RL, Brandt SB. 2006. Evaluation of a lake whitefish bioenergetics model. T Am Fish Soc 135: 61–75. [Google Scholar]
  • Madenjian CP, Pothoven SA, Kao Y-C. 2013. Reevaluation of lake trout and lake whitefish bioenergetics models. J Great Lakes Res 39: 358–364. [CrossRef] [Google Scholar]
  • Marsden JE and Chotkowski MA. 2001. Lake trout spawning on artificial reefs and the effect of zebra mussels: Fatal attraction? J Great Lakes Res 27: 33–43. [Google Scholar]
  • Marsden JE, Binder TR, Riley SC, Farha SA, Krueger CC. 2021. Habitat, in A.M. Muir, C.C. Krueger, M.J. Hansen, S.C. Riley(eds.), The lake charr Salvelinus namaycush: Biology, ecology, distribution, and management, Fish and Fisheries Series vol. 39. Cham: Springer, pp. 167–202. [Google Scholar]
  • Meckley TD, Holbrook CM, Wagner C, Binder TR. 2014. An approach for filtering hyperbolically positioned underwater acoustic telemetry data with position precision estimates. Anim Biotelemet 2: 7. [Google Scholar]
  • Methot Jr RD, Wetzel CR. 2013. Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fish Res 142: 86–99. [CrossRef] [Google Scholar]
  • Muir AM, Blackie CT, Marsden JE, Krueger CC. 2012. Lake charr Salvelinus namaycush spawning behaviour: new field observations and a review of current knowledge. Rev Fish Biol Fish 22: 575–593. [Google Scholar]
  • Muir AM, Duncan AT, Almack K, Boucher N, Dunlop ES, Febria C, Ives JT, Lauzon R, Lickers H, Mattes WP, McGregor D, McGregor H, Reid AJ. 2023. Sharing across the space: Introduction to a special issue on bridging Indigenous and non-Indigenous knowledge systems. J Great Lakes Res 49: S1–S11. [CrossRef] [Google Scholar]
  • Orrell DL, Hussey NE. 2022. Using the VEMCO Positioning System (VPS) to explore fine-scale movements of aquatic species: applications, analytical approaches and future directions. Mar Ecol Prog Ser 687: 195–216. [CrossRef] [Google Scholar]
  • Pacunski RE, Palsson WA, Greene HG, Gunderson D. 2008. Conducting visual surveys with a small ROV in shallow water, in: J.R. Reynolds, H.G. Greene (eds.), Marine habitat mapping technology for Alaska, Alaska Sea Grant College Program, Fairbanks, Alaska pp. 109–128. [Google Scholar]
  • Qadri SU. 1968. Growth and reproduction of the lake whitefish, Coregonus clupeaformis, in Lac la Ronge, Saskatchewan. J Fish Res Board Can 25: 10. [Google Scholar]
  • QGIS Development Team. 2023. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Version 3.20. Available from: [Google Scholar]
  • R Development Core Team. 2022. R: A language and environment for statistical computing, version 3.5.4. Vienna, Austria: R Foundation for Statistical Computing. Available from: [Google Scholar]
  • Reid AJ, Eckert LE, Lane JF, Young N, Hinch SG, Darimont CT, Cooke SJ, Ban NC, Marshall A. 2021. “Two-Eyed Seeing”: An Indigenous framework to transform fisheries research and management. Fish Fish 22: 243–261. [CrossRef] [Google Scholar]
  • Rennie MD, Sprules GW, Johnson TB. 2009. Resource switching in fish following a major food web disruption. Oecologia 159: 879–802. [Google Scholar]
  • Roy R, Beguin J, Argillier C, Tissot L, Smith F, Smedbol S, De-Oliveira E. 2014. Testing the VEMCO positioning system: spatial distribution of the probability of location and the positioning error in a reservoir. Anim Biotelemetry 2: 1–7. [CrossRef] [Google Scholar]
  • Rogers LA, Dougherty AB. 2019. Effects of climate and demography on reproductive phenology of a harvested marine fish population. Glob Chang Biol 25: 708–20. [CrossRef] [PubMed] [Google Scholar]
  • Rudstam LG, Binkowski FP, Miller MA. 1994. A bioenergetics model for analysis of food consumption patterns of bloater in Lake Michigan. T Am Fish Soc 123: 344–357. [Google Scholar]
  • Sadovy de Mitcheson Y, Erisman B. 2012. Fishery and biological implications of fishing spawning aggregations and the social and economic importance of aggregating fishes, in Y. Sadovy de Mitcheson, P. Colin (eds.), Reef Fish Spawning Aggregations: Biology, Research, and Management, Fish and Fisheries Series vol. 35. pp. 225–284. [Google Scholar]
  • Scott WB, Crossman EJ. 1973. Freshwater fishes of Canada, in J.C. Stevenson, J. Watson, L.W. Billingsley, R.H. Wigmore (eds.), Fisheries Research Board of Canada, pp. 269–277. [Google Scholar]
  • Semenchenko S, Smeshlivaya N. 2021. Spawning behaviour of whitefishes (Coregonidae). Ann Zool Fennici 58: 129–140. [Google Scholar]
  • Smith F. 2013. Understanding HPE in the VEMCO positioning system (VPS). V1. Available from: [Accessed 2021 Sept 30] [Google Scholar]
  • Starzynski D, Lauer TE. 2014 How temperature affects timing and duration of yellow perch spawning in the Indiana waters of Lake Michigan. J Fresh Ecol 30: 445–453. [Google Scholar]
  • Stott W, Ebener MP, Mohr L, Schaeffer J, Roseman EF, Harford WJ, Johnson JE, Fietsch C-L. 2012. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron. Adv Limnol 63: 241–260. [Google Scholar]
  • Stott W, Ebener MP, Mohr L, Hartman T, Johnson JE, Roseman EF. 2013. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill) from Lake Huron and Lake Erie. Adv Limnol 63: 205–222. [Google Scholar]
  • VanDeHey, JA, Sloss BL, Peeters PJ, Sutton TM. 2009. Genetic stock structure of lake whitefish in Lake Michigan. Can J Fish Aquat Sci 66: 382–393. [Google Scholar]
  • Walker SH. 1992. Population dynamics and movement of lake whitefish in outer Saginaw Bay, Lake Huron. MSc Thesis. Department of Fisheries and Wildlife, Michigan State University. [Google Scholar]
  • Walker SH, Prout MW, Taylor WW, Winterstein SR. 1993. Population dynamics and management of lake whitefish stocks in Grand Traverse Bay, Lake Michigan. N Am J Fish Manage 13: 73–85. [CrossRef] [Google Scholar]
  • Weidel BC, Davis C, O’Malley BP, Lachance H, Osborne CA, Gatch AJ, Furgal SL, Mackey GE, Chalupnicki MA, Sard NM, Heisey A, Connerton MJ, Lantry BF. 2023. Field and laboratory validation of new sampling gear to quantify coregonine egg deposition and larval emergence across spawning habitat gradients. J Great Lakes Res 49: 1059–1068. [CrossRef] [Google Scholar]
  • Whitaker DS, Wood J. 2021. An investigation of lake whitefish recruitment, spawning, and early life history in Northern Maine: Final report. Maine Department of Inland Fisheries and Wildlife: Fisheries and Hatcheries Division. Available from: [Accessed 2023 Jan 15]. [Google Scholar]
  • Withers JL, Takade-Heumacher H, Davis L, Neuenhoff R, Albeke SE, Sweka JA. 2021. Large-and small-scale movement and distribution of acoustically tagged lake sturgeon (Acipenser fulvescens) in eastern Lake Erie. Anim Biotelemetry 9: 1–6. [Google Scholar]
  • Winter J. 1983. Underwater biotelemetry in L.A. Nielsen,D.L. Johnson, M.D. Bethesda (eds.), Fisheries Techniques, American Fisheries Society, 371–395. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.