Open Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 57, 2021
Article Number 19
Number of page(s) 13
DOI https://doi.org/10.1051/limn/2021014
Published online 29 September 2021
  • AFNOR EN 15204. 2006. Water quality − Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique). Afnor 1–39. [Google Scholar]
  • AFNOR. 2015. Qualité de l'eau. Recueil des normes. ISBN: 978-2-12-3179311-5 [Google Scholar]
  • Anagnostidis K, Komarek J. 1988. Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Arch Hydrobiol 80: 327–472. [Google Scholar]
  • Anneville A, Domaizon I, Kerimoglu O, Rimet F, Jacquet S. 2015. Blue-Green Algae in a “Greenhouse Century”? New insights from field data on climate change impacts on Cyanobacteria abundance. Ecosystems 18: 441–458. [Google Scholar]
  • Barnard MA, Chaffin JD, Plaas HE, et al. 2021. Roles of nutrient limitation on western Lake Erie CyanoHAB toxin production. Toxins 13: 47. [PubMed] [Google Scholar]
  • Bright DI, Walsby AE. 2000. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zurich. New Phytolog 146: 301–316. [Google Scholar]
  • Briand J-F, Jacquet S, Flinois C, et al. 2005. Variations in the microcystins production of Planktothrix rubescens (cyanobacteria) assessed by a four-years in situ survey of Lac du Bourget (France) and by laboratory experiments. Microb Ecol 50: 418–428. [PubMed] [Google Scholar]
  • Capo E, Debroas D, Arnaud F, et al. 2016. Long‐term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA. Molec Ecol 25: 5925–5943. [Google Scholar]
  • Capo E, Debroas D, Arnaud F, Perga ME, Chardon C, Domaizon I. 2017. Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming. Environ Microbiol 19: 2873–2892. [PubMed] [Google Scholar]
  • Cuypers Y, Vinçon-Leite B, Groleau A., Tassin B, Humbert J-F. 2011. Impact of internal waves on the spatial distribution of Planktothrix rubescens (cyanobacteria) in an alpine lake. ISME J 5: 580–589. [PubMed] [Google Scholar]
  • Derot J, Yajima H, Jacquet S. 2020. Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva. Harmful Algae 99: 101906. [PubMed] [Google Scholar]
  • Dokulil MT, Teubner K. 2012. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698: 29–46. [Google Scholar]
  • Ernst B, Hoeger SJ, O'Brien E, Dietrich DR. 2009. Abundance and toxicicty of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany. Harmful Algae 82: 329–342. [Google Scholar]
  • Fastner J, Erhard M, Carmichael WW, et al. 1999. Characterization and diversity of microcystins in natural blooms and strains of the genera Microcystis and Planktothrix from German freshwaters. Arch Hydrobiol 145: 147–163. [Google Scholar]
  • Feuillade J. 1994. The cyanobacterium (blue-green algae) Oscillatoria rubescens D.C. Arch Hydrobiol Beih Eregbn Limnol 41: 77–93. [Google Scholar]
  • Feuillade M, Feuillade J, Blanc P. 1990. Alkaline phosphatase activity fluctuations and associated factors in a eutrophic lake dominated by Oscillatoria rubescens. Hydrobiology 207: 233–240. [Google Scholar]
  • Frossard V, Grandrémy N, Arthaud F, Guillard J, Jacquet S. Evidence of ecological shifts in fresh water ecosystems: A case study with Lake Bourget (France). [Google Scholar]
  • Gallina N, Beniston M, Jacquet S. 2017. Estimating future cyanobacterial occurrence and importance in lakes: a case study with Planktothrix rubescens in Lake Geneva. Aquat Sci 79: 249–263. [Google Scholar]
  • Jacquet S, Briand J-F, Leboulanger C, et al. 2005. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4: 651–672. [Google Scholar]
  • Jacquet S, Kerimoglu O, Rimet F, Paolini G, Anneville O. 2014. Cyanobacterial bloom termination: the disappearance of Planktothrix rubescens from Lake Bourget after restoration. Freshw Biol 59: 2472–2489. [Google Scholar]
  • Jacquet S, Arthaud F, Barbet D, et al. 2017. Suivi environnemental des eaux du lac du Bourget pour l'année 2016. Rapport INRA-CISALB-CALB, 211 pages. [Google Scholar]
  • Jansson M, Bergstrom AK, Drakare S, Blomqvist P. 2001. Nutrient limitation of bacterioplankton and phytoplankton in humic lakes in northern Sweden. Freshw Biol 46: 653–666. [Google Scholar]
  • Jenny JP, et al. 2020. Scientists' Warning to Humanity: Rapid degradation of the world's large lakes. J Great Lakes Res 46: 686–702. [Google Scholar]
  • Kerimoglu O, Jacquet S, Vinçon-Leite B, et al. 2017. Modelling the plankton groups of the deep, peri-alpine Lake Bourget. Ecol Model 359: 415–433. [Google Scholar]
  • Kurmayer R, Blom JF, Deng L, Pernthaler J. 2015. Integrating phylogeny, geographic niche partitioning and secondary metabolite synthesis in bloom-forming Planktothrix. Isme J 9: 909–921. [PubMed] [Google Scholar]
  • Leboulanger C, Dorigo U, Jacquet S, LeBerre B, Paolini G, Humbert J-F. 2002. Application of a submersible spectrofluorometer for rapid monitoring of freshwater cyanobacterial blooms: a case study. Aquat Microb Ecol 30: 83–89. [Google Scholar]
  • Legrand C, Rengefors K, Fistarol GO, Granéli E. 2003. Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia 42: 406–419. [Google Scholar]
  • Mazur-Marzec H, et al. 2013. Occurrence of cyanobacteria and cyanotoxins in the Southern Baltic Proper. Filamentous cyanobacteria vs. single-celled picocyanobacteria. Hydrobiologia 701: 235–252. [Google Scholar]
  • Micheletti S, Schanz F, Walsby AE. 1998. The daily integral of photosynthesis by Planktothrix rubescens during summer stratification and autumnal mixing in Lake Zürich. New Phytolog 138: 233–249. [Google Scholar]
  • Oberhaus L, Gelinas M, Pinel-Alloul B, Ghadouani A, Humbert J-F. 2007. Grazing of tow toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and toxin transfer of microcystins. J Plankton Res 29: 827–838. [Google Scholar]
  • Oberhaus L, Briand J-F, Humbert J-F. 2008. Allelopathic growth inhibition by the toxic, bloom-forming cyanobacterium Planktothrix rubescens. FEMS Microbiol Ecol 66: 243–249. [PubMed] [Google Scholar]
  • Paerl HW, Huisman J. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1: 27–37. [PubMed] [Google Scholar]
  • Paerl HW, Xu H, McCarthy MJ, et al. 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45: 1973–1983. [PubMed] [Google Scholar]
  • Paerl HW, Scott JT, McCarthy MJ, et al. 2016. It takes two to tango: When and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environ Sci Technol 50: 10805–10813. [PubMed] [Google Scholar]
  • Pelletier JP, Orand A. 1978. Appareil de prélèvement d'un échantillon dans un fluide. Brevet d'invention 76.08579. [Google Scholar]
  • Perga ME, Domaizon I, Guillard J, Hamelet V, Anneville O. 2013. Are cyanobacterial blooms trophic dead ends? Oecologia 172: 551–562. [PubMed] [Google Scholar]
  • Posch T, Koster O, Salcher MM, Pernthaler J. 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Clim Change 2: 809–813. [Google Scholar]
  • Reynolds C, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Rimet F, et al. 2020. The Observatory on LAkes (OLA) database: Sixty years of environmental data accessible to the public. J Limnol DOI: 10.4081/jlimnol.2020.1944. [Google Scholar]
  • Rimet F, Druart J-C. 2018. A trait database for phytoplankton of temperate lakes. Ann Limnolog 54: 18. [Google Scholar]
  • Savichtcheva O, Debroas D, Perga ME, et al. 2015. Effects of nutrients and warming on Planktothrix dynamics and diversity: a palaeolimnological view based on sedimentary DNA and RNA. Freshw Biol 60: 31–49. [Google Scholar]
  • Sotton B, Anneville O, Cadel-Six S, Domaizon I, Krys S, Guillard J. 2011. Spatial match between Planktothrix rubescens and whitefish in a mesotrophic peri-alpine lake: evidence of toxins accumulation. Harmful Algae 10: 749–758. [Google Scholar]
  • Sotton B, Guillard J, Bony S, et al. 2012. Impact of toxic cyanobacterial blooms on Eurasian perch (Perca fluviatilis): experimental approaches and in situ observations in a peri-alpine lake. PLoS ONE 7: e52243. [PubMed] [Google Scholar]
  • Strickland JDH, Parsons TR. 1972. A practical handbook of seawater analysis. 2nd Ed. Bull. Fish. Res. Bd. Canada 167: 311. [Google Scholar]
  • Tao Y, Wolinska J, Hölker F, Agha R. 2020. Light intensity and spectral distribution affect chytrid infection of cyanobacteria via modulation of host fitness. Parasitology 147: 1206–1215. [PubMed] [Google Scholar]
  • Tapolczai K, Anneville O, Padisak J, et al. 2014. Occurrence and mass development of Mougeotia spp. (Zygnemataceae) in large, deep lakes. Hydrobiologia 745: 17–29. [Google Scholar]
  • Uthermöhl H. 1958. Zur Vervollkommung der quantitativen phytoplankton-methodik. Mitt Int Ver Limnol 9: 38. [Google Scholar]
  • Vinçon-Leite B, Tassin B, Druart J-C. 2002. Phytoplankton variability in Lake Bourget: Phytoplankton dynamics and meteorology. Lakes & Reservoirs: Research and Management 7: 93–102. [Google Scholar]
  • Walsby AE, Avery A, Schanz F. 1988. The critical pressure of gas vesicles in Plantktothrix rubescens in relation to the depth of winter mixing in lake Zurich, Switzerland. Journal of Plankton Research 20: 1357–1375. [Google Scholar]
  • Walve J, Larsson U. 2007. Blooms of Baltic Sea Aphanizomenon sp. (Cyanobacteria) collapse after internal phosphorus depletion. Aquatic Microbial Ecology 49: 57–69. [Google Scholar]
  • Zotina T, Koster O, Juttner F. 2003. Photoheterotrophy and light-dependent uptake of inorganic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance. Freshwater Biology 48: 1859–1872. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.