Free Access
Issue |
Ann. Limnol. - Int. J. Lim.
Volume 57, 2021
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/limn/2020029 | |
Published online | 07 January 2021 |
- Affan MA, Khomayis HS, Al-Harbi SM, Haque MM. 2015. Effect of environmental factors on cyanobacterial abundance and cyanotoxins production in natural and drinking water, Bangladesh. Biol Sci 18: 50–58. [Google Scholar]
- Almanza V, Pedreros P, Laughinghouse HD IV, Féliz J, Parra O, Azocar M, Urrutia R. 2019. Association between trophic stat, watershed use, and blooms of cyanobacteria in south-central Chile. Limnol 75: 30–41. [CrossRef] [Google Scholar]
- Benayache NY, Nguyen-Quang T, Hushchyna K, McLellan K, Afri-Mehennaoui FZ, Bouaicha N. 2019. An overview of cyanobacteria harmful algal bloom (CyanoHAB) issues in freshwater ecosystems. IntechOpen. [Google Scholar]
- Bergounhou C, Deniel M-H, Micheau J-C, Lavabre D, LEVY G, Biasini G. 1996. Protonation de la 1, 10-phénanthroline. Bulletin de l'Union des Physiciens, 787, 90, 7 p. [Google Scholar]
- Bogard JM, Vogt JR, Hayes MN, Leavitt RP. 2020. Unabated Nitrogen Pollution Favors Growth of Toxic Cyanobacteria over Chlorophytes in Most Hypereutrophic Lakes. Environ Sci Technol 54: 3219–3227. [Google Scholar]
- Bouaïcha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Nguyen-Quang T. 2019. Structural diversity, characterization and toxicology of microcystins. Toxins 11: 714. [Google Scholar]
- Bouhadadda R, Nélieu S, Nasri H, Delarue G, Bouaicha N. 2016. High diversity of microcystins in a Microcystis bloom froom an Algerian lakes. Environ Pollut 216: 836–844. [Google Scholar]
- Bourrelly P. 1972. Les algues d'eau douce. Initiation à la systématique. Tome I: Les algues vertes. Editions N. Boubée & Cie. [Google Scholar]
- Bourrelly P. 1981. Les algues d'eau douce. Initiation à la systématique. Tome II: Les algues jaunes et brunes. Chrysophycées, Phéophycées, Xanthophycées et Diatomées. Société Nouvelle des Editions Boubée. [Google Scholar]
- Bourrelly P. 1985. Les algues d'eau douce. Initiation à la systématique. Tome III: Les algues bleues et rouges. Eugléniens, Péridiniens et cryptomonadines. Société Nouvelle des Editions Boubée. [Google Scholar]
- Bouvy M, Ba N, Ka S, Sane S, Pagano M, Arfi R. 2006. Phytoplankton community structure and species assemblage succession in a shallow tropical lake (Lake Guiers, Senegal). Aquat Microb Ecol 45: 147–161. [Google Scholar]
- Brittain SM, Wang J, Babcock-Jackson L, Carmichael WW, Rinehart KL, Culver DA. 2000. Isolation and characterization of microcystins, cyclic heptapeptide hepatotoxins from a Lake Erie strain of Microcystis aeruginosa. J Great Lakes Res 26: 241–249. [Google Scholar]
- Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD. 2012. Ecophysiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46: 1407–1394. [Google Scholar]
- Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
- Chaffin JD, Bridgeman TB, Heckathorn SA, Mishra S. 2011. Assessment of Microcystis growth rate potential and nutrient status across a trophic gradient in western Lake Erie. J Great Lakes Res 37: 92–100. [Google Scholar]
- Chorus I, Bartram J. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. World Health Organization Report. E & FN Spon, London and New York. [CrossRef] [Google Scholar]
- Corbel S, Mougin C, Bouaïcha N. 2014. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops − a review. Chemosphere 96: 1–15. [PubMed] [Google Scholar]
- Descy JP, Hardy MA, Sténuite S, Pirlot S, Leporcq B, Kimirei I, Sekadende B, Mwaitega SR, Sinyenza D. 2005. Phytoplankton pigments and community composition in Lake Tanganyika. Freshwat Biol 50: 668–684. [CrossRef] [Google Scholar]
- Dittmann E, Gugger M, Sivonen K, Fewer DP. 2015. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol 23: 642–652. [Google Scholar]
- Downing JA, McCauley E. 1992. The nitrogen-phosphorus relationship in lakes. Limnol Oceanogr 37: 936–945. [Google Scholar]
- Downing JA, Watson SB, Mccauley E. 2001. Predicting cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58: 1905–1908. [Google Scholar]
- Ebrahimpour S, Mohammadzade H, Naderi A, Azarpeykan A. 2012. Evaluation of lakes eutrophication using GIS (case study: Zaribar marshy lake). Proceedings of 16th Congress of Iran Geology Association, (IGA' 12), Shiraz University, Shiraz, Iran. [Google Scholar]
- Ekholm P. 2008. N:P Ratios in Estimating Nutrient Limitation in Aquatic Systems. Finnish Environment Institute: Helsingfors, Finland, 11–14. [Google Scholar]
- El Herry S, Bouaïcha N, Ben Rejeb Jenhani A, Romdhane MS. 2007. First Observation of Microcystins in Tunisian inland waters: a threat to river mouths and lagoon ecosystems. TWB, Transit Waters Bull 2: 73–82. [Google Scholar]
- El Herry S, Fathalli A, Jenhani-Ben RA, Bouaicha N. 2008. Seasonal 1022 occurrence and toxicity of Microcystis spp. and Oscillatoria tenuis in 1023 the Lebna Dam, Tunisia. Water Res 42: 1263–1273. [CrossRef] [PubMed] [Google Scholar]
- Elliott J, Jones I, Thackeray S. 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiol 559: 401–411. [Google Scholar]
- Elliott JA. 2010. The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob Change Biol 16: 864–876. [CrossRef] [Google Scholar]
- Evans JC. 1996. Straightforward statistics for the behavioral sciences. Thomson Brooks, Cole Publishing Co. [Google Scholar]
- Fernandez C, Parodi RE, Cáceres JE. 2012. Phytoplankton structure and diversity in the eutrophic- hypereutrophic reservoir Paso de las Piedra, Argentina. Limnol 13: 13–25. [CrossRef] [Google Scholar]
- Furukawa K, Noda N, Tsuneda S, Saito T, Itayama T, Inamori Y. 2006. Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase a gene. J Biosci Bioeng 102: 90–96. [CrossRef] [PubMed] [Google Scholar]
- Geitler L. 1932. Cyanophyceae. Akademische Verlagsgesellshaft, Leipszig. [Google Scholar]
- Gellati FZ, Touati H, Tambosco K, Quiblier C, Bensouilah M. 2017. Unusual cohabitation and competition between Planktothrix rubescens and Microcystis sp. (Cyanobacteria) in a subtropical reservoir (Hammam Debagh) located in Algeria. PLoS ONE 12: e0183540. [Google Scholar]
- Ghashghaie M, Maralan MRS, Ostad-Ali-Askari K, Eslamian S, Singh VP. 2018. Determining the Eutrophication State of Ecbatan Reservoir using Carlson Index. Am J Eng App Sci 11: 491–500. [CrossRef] [Google Scholar]
- Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van Der Wall DB. 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54: 87–97. [Google Scholar]
- Griffith AW, Gobler CJ. 2019. Harmful algal blooms: a climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 91: 101590. [Google Scholar]
- Haakonsson S, Rodriguez-Gallego L, Somma A, Bonilla S. 2017. Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystem. Sci Total Environ 609: 1132–1139. [CrossRef] [PubMed] [Google Scholar]
- Hammou HA, Latour D, Samoudi S, Mouhri K. 2018. Occurrence of the First Toxic Microcystis Bloom in a Recent Moroccan Reservoir. Water Resour J 45: 409–417. [CrossRef] [Google Scholar]
- Harke MJ, Berry DL, Ammerman JW, Gobler CJ. 2012. Molecular response of the bloom-forming cyanobacterium, Microcystis aeruginosa, to phosphorus limitation. Microb Ecol 63: 188–198. [Google Scholar]
- Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4–20. [Google Scholar]
- Havens KE, James RT, East TL, Smith VH. 2003. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environ Pollut 122: 379–390. [Google Scholar]
- Hillebrand H, Durselen CD, Kirschtele D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [Google Scholar]
- Horne JA, Commins LM. 1987. Macronutrient controls on nitrogen fixation in planktonic cyanobacterial populations. N.Z. J Mar Freshwat Res 21: 413–423. [CrossRef] [Google Scholar]
- Horst GP, Sarnelle O, White JD, Hamilton SK, Kaul RB, Bressie JD. 2014. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res 54: 188–198. [CrossRef] [PubMed] [Google Scholar]
- Huang L, Fang H, He G, Jiang H, Wang C. 2016. Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents. Environ Pollut 219: 760–773. [Google Scholar]
- Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. 2018. Cyanobacterial blooms. Nat Rev Microbiol 16. [Google Scholar]
- Jähmichen S, Long BM, Petzoldt T. 2011. Microcystin production by Microcystis aeruginosa: Direct regulation bay multiple environmental factors. Harmful Algae 12: 95–104. [Google Scholar]
- Jankowiak J, Hattenrath-Lehmann T, Kramer BJ, Ladds M, Gobler CJ. 2019. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol Oceanogr 64: 1347–1370. [Google Scholar]
- Jensen JP, Jeppesen E, Olrik K, Kristensen P. 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51: 1692–1699. [Google Scholar]
- Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, Lauridsen TL, Liboriussen L, Beklioglu M, Özen A, Olesen JE. 2009. Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations. J Environ Qual 38: 1930–1941. [CrossRef] [PubMed] [Google Scholar]
- Kling HJ, Muggidde R, Hecky RE. 2001. Recent changes in the phytoplankton community of Lake Victoria in response to eutrophication. In The Great Lakes of the World (GLOW): Food web, Health, and integrity (Eds: Munawar M. and Skjoldal H.R.). Backhuys, Leiden, 47–65. [Google Scholar]
- Komárek J, Anagnostides K. 1999. Cyanoprokaryota, Part 1: Chroococcales, Süsswasserflora von Mitteleuropa, Bd 19/1, Spektrum Akademischer Verlag. [Google Scholar]
- Komárek J, Anagnostides K. 2005. Cyanoprokaryota, Part 2: Oscillatoriales, Süsswasserflora von Mitteleuropa, Bd 19/2, Spektrum Akademischer Verlag. [Google Scholar]
- Kosten S, Huszar VLM, Bécares E, Costa LS, Donk E, Hansson LA, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, De Meester L, Moss B, Lürling M, Nõges T, Romo S, Scheffer M. 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18: 118–126. [CrossRef] [Google Scholar]
- Li H, Xing P, Wu QL. 2012. The high resilience of the bacterioplankton community in the face of a catastrophic disturbance by a heavy Microcystis bloom. FEMS Microbiol Ecol 82: 192–201. [CrossRef] [PubMed] [Google Scholar]
- Li J, Hansson LA, Persson KM. 2018. Nutrient Control to Prevent the Occurrence of Cyanobacterial Blooms in a Eutrophic Lake in Southern Sweden, Used for Drinking Water Supply. Water 10: 919. [Google Scholar]
- Li X, Dreher T, Li R. 2016. An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54: 54–68. [Google Scholar]
- Mantzouki E, Lürling M, Fastner J, Domis LDS, Wilk-Woźniak E, Koreivienė J, Seelen L, Teurlincx S, Verstijnen Y, Krztoń W. et al., 2018. Temperature effects explain continental scale distribution of cyanobacteria toxins. Toxins 10: 156. [Google Scholar]
- Marion JW, Zhang F, Cutting D, Lee J. 2017. Associations between county-level land cover classes and cyanobacteria blooms in the United States. Ecol Eng 108: 556–563. [Google Scholar]
- Miller TR, Beversdorf LJ, Weirich CA, Bartlett SL. 2017. Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water. Mar Drugs J 15: 160. [CrossRef] [Google Scholar]
- Mohamed ZA, Carmichael WW, Hussein AA. 2003. Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18: 137–141. [CrossRef] [PubMed] [Google Scholar]
- Moore SK, Trainer VL, Mantua NJ, Parker MS, Laws EA, Backer LC, Fleming LE. 2008. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ Health 7: S4. [Google Scholar]
- Morton SD, Lee TH. 1974. Algal blooms–possible effects of iron. Environ Sci Tech 8: 673–674. [CrossRef] [Google Scholar]
- Nasri AB, Bouaïcha N, Fastner J. 2004. First report of a microcystin-containing bloom of the cyanobacteria Microcystis spp. in Lake Oubeia, eastern Algeria. Arch Environ Contam Toxicol 46: 197–202. [CrossRef] [PubMed] [Google Scholar]
- Nasri H, Bouaïcha N, Harche MK. 2007. A New Morphospecies of Microcystis sp. Forming Bloom in the Cheffia Dam (Algeria): Seasonal Variation of Microcystin Concentrations in Raw Water and Their Removal in a Full-Scale Treatment Plant. Environ Toxicol 22: 341–448. [CrossRef] [PubMed] [Google Scholar]
- Ndlela LL, Oberholster PJ, Van Wyk JH, Cheng PH. 2016. An overview of cyanobacterial bloom occurrences and research in Africa over the last decade. Harmful Algae 60: 11–26. [Google Scholar]
- Neuveux J. 1974. Recherche sur la chlorophylle a et la phéophytine a en milieu oligotrophe et en milieu eutophe (Méditérrannée). Thèse de 3ème cycle, Université Paris VI, 116 pages. [Google Scholar]
- Niamien-Ebrottie JE, Bhattacharyya S, Deep PR, Nayak B. 2015. Cyanobacteria and cyanotoxins in the World: Review. Internat J App Res 1: 563–569. [Google Scholar]
- North RL, Guildford SJ, Smith REH, Havens SM, Twiss MR. 2007. Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol Oceanogr 52: 315–328. [Google Scholar]
- Nyenje PM, Foppen JW, Uhlenbrook S, Kulabako R, Muwanga A. 2010. Eutrophisation et libération d'éléments nutritifs dans les zones urbaines d'Afrique subsaharienne. Sci Total Environ 408: 447–455. [CrossRef] [PubMed] [Google Scholar]
- Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, Busch S, Göbel J, Gromisz S, Huseby S, Huttunen A. et al. 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt Sea Environ Proc 106: 144. [Google Scholar]
- O'Neil J, Davis T, Burford M, Gobler C. 2012. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14: 313–334. [Google Scholar]
- Oudra B, Loudiki M, Sbiyyaa B, Martins R, Vasconcelos V, Namikoshi N. 2001. Isolation, characterization and quantification of microcystins (heptapeptides hepatotoxins) in Microcystis aeruginosa dominated bloom of Lalla Takerkoust lake-reservoir (Morocco). Toxicon 39: 1375–1381. [CrossRef] [PubMed] [Google Scholar]
- Paerl HW. 2018. Why does N-limitation persist in the world's marine waters? Mar Chem 206: 1–6. [Google Scholar]
- Paerl HW, Huisman J. 2009. Climat change: a catalyst for global expension of harmful cyanobacterial blooms. Environ Microbiol Rep 1: 27–37. [CrossRef] [PubMed] [Google Scholar]
- Paerl HW, Paul VJ. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res 46: 1349–1363. [CrossRef] [PubMed] [Google Scholar]
- Paerl HW, Scott JT, McCarthy JJ, Newell SE, Gardner WS, Havens KE, Hoffman DK, Wilhelm SW, Wurtsbaugh WA. 2016. It takes two to tango: When and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environ Sci Technol 50: 10805–10813. [Google Scholar]
- Paerl HW, Xu H, McCarthy MJ, Zhu GW, Qin BQ, Li YP, Gardner WS. 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res 45: 1973–1983. [CrossRef] [PubMed] [Google Scholar]
- Pan D, Pavagadhia S, Umashankara S, Raia A, Benkea P, Raia M, Saxenaa G, Gangua, V, Swarupa S. 2019. Resource partitioning strategies during toxin production in Microcystis aeruginosa revealed by integrative omics analysis. Algal Res 42: 101582. [Google Scholar]
- Pimentel JSM, Giani A. 2014. Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl Environ Microbiol 80: 5836–5843. [Google Scholar]
- Preece D, Becerra R, Robinson K, Dandy J. 2017. Assessing alexithymia: Psychometric properties and factorial invariance of the 20-item Toronto Alexithymia Scale in nonclinical and psychiatric samples. J Psychopathol Behav Asses 40: 276–287. [CrossRef] [Google Scholar]
- Puddick J, Wood SA, Hawes L, Hamilton DP. 2016. Fine-scale cryogenic sampling of planktonic microbial communities: Application to toxic cyanobacterial blooms. Limnol Oceanogr 4: 600–609. [Google Scholar]
- Rapala J, Sivonen K, Lyra C, Niemelä SI. 1997. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 64: 2206–2212. [Google Scholar]
- Rastogi RP, Sinha RP, Incharoensakdi A. 2014. The cyanotoxin-microcystins: current overview. Rev Environ Sci Biotechnol 13: 215–249. [Google Scholar]
- Reynaud PA, Laloë F. 1985. La méthode des suspensions-dilutions adaptée à l'estimation des populations algales dans une rizière. Rev Ecol Biol Sol 22: 161–192 [Google Scholar]
- Reynolds CS. 1997. Vegetation Processes in the Pelagic. A Model for Ecosystem Theory. Ecology Institute, D-21385 Oldendorf, Luhe, ISSN 0932–2205. [Google Scholar]
- Rigosi A, Carey CC, Ibelings WB, Brookes DJ. 2014. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59: 99–114. [Google Scholar]
- Rodier J. 1996. Analyse de l'eau : eau naturelle, eau résiduaire et eau de mer. Dunold, 8ème édition. [Google Scholar]
- Schindler DW. 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262. [Google Scholar]
- Sivonen K. 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56: 2658–2666. [Google Scholar]
- Smith VH. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671. [Google Scholar]
- Steffen M, MBelisle BS, Watson SB, Boyer GL, Wilhelm SW. 2014. Status, causes and controls of cyanobacterial blooms in Lake Erie. J Great Lakes Res 40: 215–225. [Google Scholar]
- Steinberg CEW, Gruhl E. 1992. Physical measures to inhibit planktonic Cyanobacteria. In Eutrophication: Research and Application to Water Supply (Eds: Sutcliffe D.W. and Jones J.G.), Freshwat. Biological Association, London. [Google Scholar]
- Steinberg CEW, Hartmann HM. 1998. Planktonic bloom-forming cyanobacteria and the eutrophication of lakes and rivers. Freshwat Biol 20: 279–287. [CrossRef] [Google Scholar]
- Sukenik A, Hadas O, Kaplan A, Quesada A. 2012. Invasion of Nostocales (Cyanobacteria) to Suptropical and Temperate Freshwater Lakes- Physiological, Regional, and global driving forces. Frontiers Microbiol 3: 86. [CrossRef] [PubMed] [Google Scholar]
- Svircev Z, Drobac D, Tokodi N, Mijovic B. 2017. Toxicoloy of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch Toxicol 91: 621–650. [CrossRef] [PubMed] [Google Scholar]
- Taranu ZE, Pick FR, Creed IF, Zestepa A, Watson SB. 2019. Meteorological and nutrient conditions influence microcystin congeners in freshwaters. Toxins 11: 620. [Google Scholar]
- Thomas MK, Litchman E. 2016. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763: 357–369. [Google Scholar]
- Tian C, Lu X, Pei H, Hu W, Xie J. 2012. Seasonal dynamics of phytoplankton and its relationship with the environmental factors in Dongping Lake, China. Environ Monit Asses 185: 2627–2645. [CrossRef] [Google Scholar]
- Trimbee AM, Prepas EE. 1987. Evaluation of total phosphorus as a predictor of relative biomass of blue-green algae with emphasis on Alberta lakes. Can J Fish Aquat Sci 14: 1337–1342. [Google Scholar]
- Twiss MR, Auclair J, Charlton MN. 2000. An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques. Can J Fish Aquat Sci 57: 86–95. [Google Scholar]
- Utermöhl H. 1958. On the perfection of quantitative phytoplankton method. Int. Ass. Theo. Appl Limnol commun 9: 1–38. [Google Scholar]
- Van Asten PJA, Barbie'Ro L, Wopereis MCS, Maeght JL, Van Der Zee SEATM. 2002. Actual and potential salt-related soil degradation in an irrigated rice scheme in the Sahelian zone of Mauritania. Agricul Water Manag 60: 13–32. [CrossRef] [Google Scholar]
- Van de Waal DB, Verspagen JMH, Lurling M, Van Donk E, Visser PM, Huisman J. 2009. The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecology letter 12: 1326–1335. [CrossRef] [Google Scholar]
- Vézie C, Brient L, Sivonen K, Bertru G, Lefeuvre JC, Salkinoja-Salonen M. 1998. Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). Microb Ecol 35: 126–135. [Google Scholar]
- Visser PM, Verspagen JMH, Sandrini G, Sta LJ, Matthijs HCP, Paerl HW, Huisman J. 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54: 145–159. [Google Scholar]
- Vrede T, Tranvik JL. 2006. Iron Constraints on Planktonic Primary Production in Oligotrophic Lakes. Ecosystems 9: 1094–1105. [Google Scholar]
- Wacklin P, Hoffmann L, Komárek J. 2009. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet and Flahault) comb. nova. Fottea 9: 59–64. [CrossRef] [Google Scholar]
- Wang XQ, Jiang HB, Qiu BS. 2015. Effects of iron availability on competition between Microcystis and Pseudanabaena or Chlorella species. Eur J Phycol 50: 260–270. [Google Scholar]
- Watson SB, McCauley E, Downing JA. 1997. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42: 487–495. [Google Scholar]
- Wever DA, Muylaert K, Langlet D, Alleman L, Descry JP, Andre L, Cocquyt C, Vyverman W. 2007. Differential response of phytoplankton to additions of nitrogen, phosphorus and iron in Lake Tanganyika. Freshwat Biol 53: 264–277. [Google Scholar]
- WHO. 1998. Guidelines for drinking-water quality. Addendum to vol. 2 Geneva: World Health Organisation. [Google Scholar]
- WHO. 2003. Cyanobacterial toxins: Microcystin-LR in drinking water. Background document for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health Organization. [Google Scholar]
- Wicks RJ, Thiel PG. 1990. Environmental factors affecting the production of peptide toxins in floating scums of cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environ Sci Tech 24: 1413–1418. [CrossRef] [Google Scholar]
- Willén T, Mattsson R. 1997. Water- blooming and toxin producing cyanobacteria in Swedish fresh and bracish waters, 1981–1995. Hydrobiologia 353: 181–192. [Google Scholar]
- Wurtsbaugh WA, Paerl HW, Dodds WK. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 6: e1373. [Google Scholar]
- Xu H, Paerl HW, Qin B, Zhu G, Hall NS, Wu Y. 2015. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environ Sci Tech 49: 1051–1059. [CrossRef] [Google Scholar]
- Xu Y, Wang G, Yang W, Li R. 2010. Dynamics of the water bloomforming Microcystis and its relationship with physicochemical factors in Lake Xuanwu (China). Environ Sci Pollut Res 17: 1581–1590. [CrossRef] [Google Scholar]
- Yang Z, Buley PR, Fernandez-Figueroa GE, Barros UGM, Rajendran S, Wilson EA. 2018. Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond. Environ Pollut 240: 590–598. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.