Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
Article Number 8
Number of page(s) 7
DOI https://doi.org/10.1051/limn/2020008
Published online 29 April 2020
  • Aiba S, Ogawa T. 1977. Assessment of growth yield of a Bluegreen Alga, Spirulina platensis, in Axenic and continuous culture. Microbiology 102: 179–182. [Google Scholar]
  • Ali SK, Saleh AM. 2012. Spirulina-an overview. Int J Pharm Pharm Sci T 4: 9–15. [Google Scholar]
  • Altınışık M. 2000. Serbest oksijen radikalleri ve antioksidanlar. Ders notları, Aydın Tıp Fakültesi, Access: [http://www.mustafaaltinisik.org.uk/21-adsem-01.pdf]. [Google Scholar]
  • Arakawa T, Timasheff SN. 1985. The stabilisation of proteins by osmolytes. Biophys J 47: 411–414. [CrossRef] [PubMed] [Google Scholar]
  • Arunakumara KKIU, Zang X, Song X. 2008. Bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. J Ocean Univ Chin 7: 397–403. [CrossRef] [Google Scholar]
  • Asada K, 1999. The water-water cycle in chloroplasts, scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639. [CrossRef] [PubMed] [Google Scholar]
  • Asada K, Takahashi M. 1987. Production and scavenging of active oxygen in chloroplasts. İçinde, Photoinhibition. Amsterdam: Elsevier, pp. 227–287. [Google Scholar]
  • Bailly C, Benamar A, Corbineau F, Come D, 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plantarum 97: 104– 110. [CrossRef] [Google Scholar]
  • Bassi R, Sharma SS. 1993. Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry 33: 1339–1342. [Google Scholar]
  • Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity, some large consequences of minor changes in conditions. Anal Biochem 161: 559–566. [CrossRef] [PubMed] [Google Scholar]
  • Bilker O, Shaw MK, Jones IW, Ley SV, Mordue A, Sinden RE. 2002. Azadirachtin disrupts formation of organized microtubule arrays during microgametogenesis of Plasmodium. J Eukaryotic Microbiol 49: 489–97. [CrossRef] [Google Scholar]
  • Bowler C, Montagu MV, Inze D, 1992. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43: 83–116. [Google Scholar]
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. [CrossRef] [PubMed] [Google Scholar]
  • Bray EA, Bailey-Serres J, Weretilnyk E. 2000. Responses to abiotic stress Biochemistry and Molecular Biology of Plants, Waldorf: American Society of Plant Biologists, pp. 1158–1203. [Google Scholar]
  • Broadbent P, Creissen GP, Kular B, Wellburn AR, Mullineaux PM. 1995. Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J 8: 247–255. [Google Scholar]
  • Burt SS. 1990. Bulletin on RH‐5992 Toxicology. Independence Mall West, Philadelphia, PA: Rohm and Haas Company, 19105. [Google Scholar]
  • Cao C, Sun S, Wang X, Liu W, Liang Y. 2011. Effects of manganese on the growth, photosystem II and SOD activity of the dinoflagellate Amphidinium sp. J Appl Phycol 23: 1039–1043. [Google Scholar]
  • Cargnelutti D, Tabaldi LA, Spanevello RM, et al. 2006. Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65: 999–1006. [PubMed] [Google Scholar]
  • Chen J, Shiyab S, Han FX, et al. 2009. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18: 110–121. [CrossRef] [PubMed] [Google Scholar]
  • Chia MA, Akinsanmi JT, Tanimu Y, Ladan Z. 2016. Algicidal effects of aqueous leaf extracts of neem (Azadirachta indica) on Scenedesmus quadricauda (Turp.) de Brébission. Acta Bot Bras 30: 1–8. [CrossRef] [Google Scholar]
  • Cho UH, Park JO. 2000. Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156: 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Choudhary M, Kumar U, Mohammed J, Khan A, Zutshi S, Fatma T, 2007. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotox Environ Safe 66: 204–209. [CrossRef] [Google Scholar]
  • Ciferri O. 1983. Spirulina, the edible microorganism. Microbiol Rev 47: 551. [CrossRef] [PubMed] [Google Scholar]
  • Delauney AJ, Verma DPS. 1993. Proline biosynthesis and osmoregulation in plants. Plant J 4: 215–223. [Google Scholar]
  • Elstner EF, Wagner GA, Schutz W. 1988. Activated oxygen in green plants in relation to stress situations. In Current topics in plant biochemistry and physiology, in Proceedings of the Plant Biochemistry and Physiology Symposium held at the University of Missouri, Columbia (USA). [Google Scholar]
  • Ewald D, Schlee D. 1983. Biochemical effects of sulphur dioxide on proline metabolism in the alga Trebouxia sp. New Phytol 94: 235–240. [Google Scholar]
  • Fatma T, Khan MA, Choudhary M. 2007. Impact of environmental pollution on cyanobacterial proline content. J Appl Phycol 19: 625–629. [Google Scholar]
  • Flohe L, Gunzler WA. 1976. Glutathione Metabolism and function. New York: Raven, 17–34. [Google Scholar]
  • Foyer CH, Descourvieres P, Kunert KJ. 1994. Protection against oxygen radicals, an important defence mechanism studied in transgenic plants. Plant Cell Environ 17: 507–523. [Google Scholar]
  • Fritzsche U, Cleffmann G. 1987. The insecticide Aza reduces predominantly cellular RNA in Tetrhymena. Naturwissenschaften 74: 191–192. [Google Scholar]
  • Goel A, Sheoran IS. 2003. Lipid Peroxidation and Peroxide-Scavenging Enzymes in Cotton Seeds Under Natural Ageing. Biol Plantarum 46: 429–434. [CrossRef] [Google Scholar]
  • Hassan HM, Scandalios JG. 1990. Superoxide dismutases in aerobic organisms. In: Alscher R.G. and Cumming J.R. (eds.) Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Wiley-Liss Inc, New York, pp 175–199. [Google Scholar]
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated Chloroplasts. I. Stoichiometry of fatty acid peroxidation. Archives Biochem Biophys 125: 189–198. [CrossRef] [PubMed] [Google Scholar]
  • Hollnagel HC, Di Mascio P, Asano CS, et al. 1996. The effect of light on the biosynthesis of beta-carotene and superoxide dismutase activity in the photosynthetic alga Gonyaulax polyedra. Braz J Med Biol Res 29: 105–110. [PubMed] [Google Scholar]
  • Kadpal RP, Rao NA. 1985. Alteration in the biosynthesis of proteins and nucleic acid in finger millet (Eleucine coracana) seedling during water stress and the effect of proline on protein biosynthesis. Plant Science 40: 73–79. [CrossRef] [Google Scholar]
  • Kong FX, Sang WL, Hu W, Li JJ. 1999. Physiological and biochemical response of Scenedsmus obliquus to combined effects of Al, Ca, and low pH. Bull Environ Contam Toxicol 62: 179–186. [CrossRef] [PubMed] [Google Scholar]
  • Kumar S, Habib K, Fatma T. 2008. Endosulfan induced biochemical changes in nitrogen-fixing cyanobacteria. Sci Total Environ 403: 130–138. [PubMed] [Google Scholar]
  • Lee MY, Shin HY, 2003. Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J Appl Phycol 15: 13–19. [Google Scholar]
  • Liu L, Zhu B, Wang GX. 2015. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris. Environ Sci Poll Res 22: 7766–7775. [CrossRef] [Google Scholar]
  • MacKinney G. 1941. Absorption of light by chlorophyll solution. J Biol Chem 140: 315–322. [Google Scholar]
  • Mallick N, Rai LC. 1998. Characterization of Cd-induced low molecular weight protein in a N-fixing cyanobacterium Anabaena doliolum with special reference to co-/multiple tolerance. Biometals 11: 55–61. [Google Scholar]
  • Mordue AJ, Blackwell A. 1993. Azadirachtin: an update. J Insect Physiol 39: 903–924. [Google Scholar]
  • Morgan ED. 2009. Azadirachtin: a scientific gold mine. Bioorg Med Chem 17: 4096–4105. [CrossRef] [PubMed] [Google Scholar]
  • Morita S, Kaminaka H, Masumura T, Tanaka K. 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; involvement of hydrogen peroxide in oxidative stress signalling. Plant Cell Physiol 40: 417–422. [Google Scholar]
  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR. 2002. Phytoremediation potential of Spirulina (Arthrospira) platensis, biosorption and toxicity studies of cadmium. Environ Pollut 119: 45–53. [Google Scholar]
  • Prasad SM, Dwivedi R, Singh RMPVVB, Singh D. 2007. Neem Leaf Aqueous Extract Induced Growth, Pigments and Photosynthesis Responses of Cyanobacterium Nostoc muscorum. Philipp J Sci 136: 75–81. [Google Scholar]
  • Rudolph AS, Crowe JH, Crowe LM. 1986. Effects of three stabilising agents − proline, betaine and trehalose − on membrane phospholipids. Archives Biochem Biophys 245: 134–143. [CrossRef] [Google Scholar]
  • Sáenz ME, Marzio WDD, Alberdi JL. 2012. Effects of a Commercial Formulation of Cypermethrin used in Biotech Soybean Crops on Growth and Antioxidant Enzymes of Freshwater Algae. J Environ Prot 2: 15–22. [Google Scholar]
  • Saladin GC, Clement Magne C. 2003. Stress effects of flumioxazin herbicide on grapevine (Vitis vinifera L.) grown in vitro. Plant Cell Rep 21: 1221–1227. [Google Scholar]
  • Salehzadeh A, Akhkha A, Cushley W, Adams RLP, Kusel JR, Strang RHC. 2003. The antimitotic effect of the neem terpenoid Aza on cultured insect cells. Insect Biochem Mol Bio 33: 681–689. [CrossRef] [Google Scholar]
  • Schickler H, Caspi H. 1999. Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol Plantarum 105: 39–44. [CrossRef] [Google Scholar]
  • Schmutterer H. 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35: 271–297. [CrossRef] [PubMed] [Google Scholar]
  • Sgherri CLM, Loggini B, Puliga S, Navari-Izzo F. 1994. Antioxidant system in Sporobolus stapfianus, changes in response to desiccation and rehydration. Phytochem 35: 561–565. [CrossRef] [Google Scholar]
  • Sundaram KM. 1996. Azadirachtin biopesticide, a review of studies conducted on its analytical chemistry, environmental behaviour and biological effects. J Environ Sci Health B 31: 913–948. [Google Scholar]
  • Sundaram KMS. 1997. Uptake, elimination and biochemical effects of Aza and tebufenozide in algae. J Environ Sci Health B 32: 295– 312. [Google Scholar]
  • Sundaram KMS, Nott R, Curry J. 1996. Deposition, persistence and fate of tebufenozide (RH‐5992) in some terrestrial and aquatic components of a boreal forest environment after aerial application of mimic. J Environ Sci Health B 31: 699–750. [Google Scholar]
  • Tang J, Wu Q, Hao H, Chen Y, Wu M. 2003. Growth inhibition of the cyanobacterium Spirulina (Arthrospira) platensis by 1.7 MHz ultrasonic irradiation. J Appl Phycol 15: 37–43. [Google Scholar]
  • Teisseire H, Vernet G. 2001. Effects of the fungicide folpet on the activities of antioxidative enzymes in duckweed (Lemna minor). Pesticide Biochem Physiol 69: 112–117. [CrossRef] [Google Scholar]
  • Urso ML, Clarkson PM. 2003. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189, 41–54. [CrossRef] [PubMed] [Google Scholar]
  • Verma S, Dubey R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164: 645–65. [Google Scholar]
  • Vitoria AP, Lea PJ, Azevedo RA. 2001. Antioxidant enzyme responses to cadmium in radish tissues. Phytochemistry 57: 701–710. [CrossRef] [PubMed] [Google Scholar]
  • Wang ZH, Nie XP, Yue WJ. 2011. Toxicological effects of cypermethrin to marine phytoplankton in a co-culture system under laboratory conditions. Ecotoxicology 20: 1258–1267. [CrossRef] [PubMed] [Google Scholar]
  • Wang SY, Jiao H, Faust M. 1991. Changes in ascorbate, glutathione and related enzyme activity during thidiazuron-induced bud break of apple. Physiol Plantarum 82: 231–236. [CrossRef] [Google Scholar]
  • Weimberg R, Lerner HR, Poljakoff‐Mayber A. 1982. A relationship between potassium and proline accumulation in salt‐stressed Sorghum bicolor. Physiol Plantarum 55: 5–10. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.