Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 55, 2019
Article Number 24
Number of page(s) 11
DOI https://doi.org/10.1051/limn/2019023
Published online 12 December 2019
  • Cao J, Hou ZY, Li ZK, Chu ZS, Yang PP, Zheng BH. 2018. Succession of phytoplankton functional groups and their driving factors in a subtropical plateau lake. Sci Total Environ 631–632: 1127–1137. [CrossRef] [PubMed] [Google Scholar]
  • Cellamare M, Lancon AM, Leitão M, Cerasino L, Obertegger U, Flaim G. 2016. Phytoplankton functional response to spatial and temporal differences in a cold and oligotrophic lake. Hydrobiologia 764: 199–209. [Google Scholar]
  • Costa LS, Huszar VLM, Ovalle AR. 2009. Phytoplankton functional groups in a tropical estuary: hydrological control and nutrient limitation. Estuar Coasts 32: 508–521. [CrossRef] [Google Scholar]
  • Costa MRAD, Attayde JL, Becker V. 2015. Effects of water level reduction on the dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes. Hydrobiologia 29: 1–15. [Google Scholar]
  • Dantas EW, Bittencourt-Oloveira MDC, Moura ADN. 2012. Dynamics of phytoplankton associations in three reservoirs in northeastern Brazil assessed using Reynolds' theory. Limnologica 42: 72–80. [Google Scholar]
  • Dong J, Li GB, Song L. 2014. Historical changes of phytoplankton functional groups in Lake Fuxian, Lake Erhai and Lake Dianchi since 1960s. J Lake Sci 26: 735–742 (in Chinese). [CrossRef] [Google Scholar]
  • Dong XH, Yang XD, Wang R. 2006. Diatom indicative species of eutrophication of the lakes in the middle and lower reach regions of Yangtze River, China. Environ Sci 26: 570–574. [Google Scholar]
  • Elliott JA. 2012. Predicting the impact of changing nutrient load and temperature on the phytoplankton of England's largest lake, Windermere. Freshwater Biol 57: 400–413. [CrossRef] [Google Scholar]
  • Elliott JA, Jones ID, Thackeray SJ. 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559: 401–411. [Google Scholar]
  • Grigorszky I, Kiss KT, Béres V, et al. 2006. The effects of temperature, nitrogen, and phosphorus on the encystment of Peridinium cinctum, Stein (Dinophyta). Hydrobiologia 563: 527–535. [Google Scholar]
  • Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM. 2006. Assessment of Eutropean streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51: 1757–1785. [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Plankton Res 35: 403–424. [Google Scholar]
  • Hu H, Wei Y. 2006. Chinese Freshwater Algae-System, Classification and Ecology. Beijing, China: Sciences Press. [Google Scholar]
  • Huang GJ, Wang XQ, Chen YS, Xu LW, Xu DJ. 2018. Seasonal succession of phytoplankton functional groups in a reservoir in central China. Fundam Appl Limnol 192: 1–14. [CrossRef] [Google Scholar]
  • Huszar VLM, Caraco NF. 1998. The relationship between phytoplankton composition and physical-chemical variables: a comparison of taxonomic and morphological-functional descriptors in six temperate lakes. Freshw Biol 40: 679–696. [Google Scholar]
  • Huszar VLM, Silva LHS, Marinho M, Domingos P, Sant'Anna CL. 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia 424: 67–77. [Google Scholar]
  • Kruk C, Huszar VLM, Peeters ETHM, et al. 2010. A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55: 614–627. [Google Scholar]
  • Kruk C, Mazzeo N, Lagerot G, Reynolds CS. 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. J Plankton Res 24: 901–912. [Google Scholar]
  • Lepš J, Šmilauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge: Cambridge University Press. [Google Scholar]
  • Li L, Li QH, Chen JA, Wang JF, Jiao SL, Chen FF. 2017. Temporal and spatial distribution of phytoplankton functional groups and role of environment factors in a deep subtropical reservoir. Chinese J Oceanol Limnol 1: 1–11. [Google Scholar]
  • Litchman E, Klausmeier CA. 2008. Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol S 39: 615–639. [CrossRef] [Google Scholar]
  • Lund JWG, Kipling C, Le Cren ED. 1958. The inverted microscope method of estimating algalnumbers and the statistical basis of estimation by counting. Hydrobiologia 11: 143–170. [Google Scholar]
  • Mccormick PV, O'dell MB. 1996. Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach. J N Am Benthol 15: 450–468. [CrossRef] [Google Scholar]
  • Ongun Sevindik T, Tunca H, Gönülol A, Yildirim Gürsoy N, Kücükkaya SN, Durgut Kinali Z. 2017. Phytoplankton dynamics and structure, and ecological status estimation by the Q assemblage index: a comparative analysis in two shallow Mediterranean lakes. Turk J Bot 41: 25 –36. [CrossRef] [Google Scholar]
  • Padisák J, Crossetti LO, Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19 [Google Scholar]
  • Padisák J, Scheffler W, Sípos C, Kasprzak P, Koschel R, Krienitz L. 2003. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Adv Limnol 58: 135–155. [Google Scholar]
  • Paxinos R, Mitchell JG. 2000. A rapid Utermöhl method for estimating algal numbers. J Plankton Res 22: 2255–2262. [Google Scholar]
  • Reynolds CS. 1984. The Ecology of Freshwater Phytoplankton. London: Cambridge University Press. [Google Scholar]
  • Reynolds CS. 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369–370: 11–26. [Google Scholar]
  • Reynolds CS. 2000. Phytoplankton designer- or how to predict compositional responses to trophic-state change. Hydrobiologia 424: 147–152. [Google Scholar]
  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Reynolds CS, Padisák J, Sommer U. 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188. [Google Scholar]
  • Salmaso N, Padisák J. 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112. [Google Scholar]
  • Sommer U. 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of Central Europe. Hydrobiologia 138: 1–7. [Google Scholar]
  • Song X, Liu Z, Yang G, Chen Y. 2010. Effects of resuspension and eutrophication level on summer phytoplankton dynamics in two hypertrophic areas of Lake Taihu, China. Aquat Ecol 44: 41–54. [Google Scholar]
  • Staehr PA, Sand-Jensen K. 2006. Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities. Freshw Biol 51: 249–262. [Google Scholar]
  • Sun J, Liu DY. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25: 1331–1346. [Google Scholar]
  • Ter Braak CJF. 1986. Canonical correspondence analysis: A new eigenvector method for multivariate direct gradient analysis. Ecology 67: 1167–1179. [Google Scholar]
  • Tian C, Pei H, Hu W, et al. 2015. Variation of phytoplankton functional groups modulated by hydraulic controls in Hongze Lake, China. Environ Sci Pollut Res 22: 18163–18175. [CrossRef] [Google Scholar]
  • Utermöhl H. 1931. Neue Wege in der quantitativen Erfassung des Planktons. Verh Int Ver Theor Angew Limnol 5: 567–596. [Google Scholar]
  • Venrick EL. 1978. How many cells to count? In: Sournia A [Ed], Phytoplankton Manual UNESCO, 167–180. [Google Scholar]
  • Wang L, Cai QH, Tan L, Kong LH. 2011. Phytoplankton development and ecological status during a cyanobacterial bloom in a tributary bay of the Three Gorges Reservoir, China. Sci Total Environ 409: 3820–3828. [CrossRef] [PubMed] [Google Scholar]
  • Xiao LJ, Wang T, Hu R, et al. 2011. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyonshaped reservoir. Water Res 45: 5099–5109. [CrossRef] [PubMed] [Google Scholar]
  • Yang J, Lv H, Yang J, Liu LM, Yu XQ, Chen HH. 2016. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. Sci Total Environ 557: 445–452. [CrossRef] [PubMed] [Google Scholar]
  • Zhang X, Xie P, Chen F, Li S, Qi J. 2007. Driving forces shaping phytoplankton assemblages in two subtropical plateau lakes with contrasting trophic status. Freshw Biol 52: 1463–1475. [Google Scholar]
  • Zhou Q, Zhang Y, Li K, et al. 2018. Seasonal and spatial distributions of euphotic zone and long-term variations in water transparency in a clear oligotrophic Lake Fuxian, China. J Environ Sci 72: 185–197. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.