Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 55, 2019
Article Number 23
Number of page(s) 10
DOI https://doi.org/10.1051/limn/2019020
Published online 25 November 2019
  • Abrantes N, Antunes SC, Pereira MJ, Gonçalves F. 2006. Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecol 29: 54–64. [CrossRef] [Google Scholar]
  • Abrantes N, Nogueira A, Gonçalves F. 2009a. Short-term dynamics of cladocerans in a eutrophic shallow lake during a shift in the phytoplankton dominance. Ann Limnol − Int J Lim 45: 237–245. [CrossRef] [Google Scholar]
  • Abrantes N, Pereira R, de Figueiredo DR, Marques CR, Pereira MJ, Gonçalves F. 2009b. A whole sample toxicity assessment to evaluate the sub-lethal toxicity of water and sediment elutriates from a lake exposed to diffuse pollution. Environ Toxicol 24: 259–270. [CrossRef] [PubMed] [Google Scholar]
  • Abrantes N, Pereira R, Gonçalves F. 2010. Occurrence of Pesticides in Water, Sediments, and Fish Tissues in a Lake Surrounded by Agricultural Lands: Concerning Risks to Humans and Ecological Receptors. Water Air Soil Pollut 212: 77–88. [Google Scholar]
  • Agatz A, Cole TA, Preuss TG, Zimmer E, Brown CD. 2013. Feeding Inhibition Explains Effects of Imidacloprid on the Growth, Maturation, Reproduction, and Survival of Daphnia magna . Environ Sci Technol 47: 2909–2917 [CrossRef] [PubMed] [Google Scholar]
  • Aladin NV. 1991. Salinity tolerance and morphology of the osmoregulation organs in Cladocera with special reference to Cladocera from the Aral sea. Hydrobiologia 225: 291–299. [Google Scholar]
  • Allen Y, Calow P, Baird DJ. 1995. A mechanistic model of contaminant-induced feeding inhibition in Daphnia magna . Environ Toxicol Chem 14: 1625–1630. [Google Scholar]
  • Amoros C. 1984. Introduction pratique à la systématique des organismes des eaux continentales françaises − 5. Crustacés Cladocères. Bull Mens Soc linn Lyon 53: 72–107. [Google Scholar]
  • Ansari AA, Gill SS, Khan FA. 2010. Eutrophication: Threat to Aquatic Ecosystems. In: Eutrophication: causes, consequences and control. Springer, Netherlands, Dordrecht, pp. 143–170. [Google Scholar]
  • Antunes SC, Abrantes N, Gonçalves F. 2003. Seasonal variation of the abiotic parameters and the cladoceran assemblage of Lake Vela: comparison with previous studies. Ann Limnol − Int J Lim 39: 255–264. [CrossRef] [Google Scholar]
  • APHA, WWA, WPCF. 1989. Standard methods for the examination of water and wastewater, 18th ed. Washintong DC. [Google Scholar]
  • Araujo GS, Abessa DMS, Soares AMVM, Loureiro S. 2019. Multi-generational exposure to Pb in two monophyletic Daphnia species: individual, functional and population related endpoints. Ecotoxicol Environ Saf 173: 77–85. [CrossRef] [PubMed] [Google Scholar]
  • Arnér M, Koivisto S. 1993. Effects of salinity on metabolism and life history characteristics of Daphnia magna . Hydrobiologia 259: 69–77. [Google Scholar]
  • ASTM. 1980. Standard Practice for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates and Amphibians, Reports E 729-80. Philadelphia, USA. [Google Scholar]
  • Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM. 1989. The Daphnia bioassay: a critique. Hydrobiologia 188: 403–406. [Google Scholar]
  • Baird D, Soares A, Girling A, Barber I, Bradley M, Callow P. 1988. The long-term maintenance of Daphnia magna Straus for use ecotoxicity tests: Problems and prospects. In: Lokke H, Tyle H, Bron-Rasmussen, F. (Eds.), Proceedings First European Conference on Ecotoxicology. Lyngby, Denmark, pp. 144–148. [Google Scholar]
  • Barata C, Alañon P, Gutierrez-Alonso S, Riva MC, Fernández C, Tarazona JV. 2008. A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for Environmental Risk Assessment of toxic effluents. Sci Total Environ 405: 78–86. [PubMed] [Google Scholar]
  • Barata C, Damasio J, López MA, et al. 2007. Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environ Toxicol Chem 26: 370. [CrossRef] [PubMed] [Google Scholar]
  • Bezirci G, Akkas SB, Rinke K, et al. 2012. Impacts of salinity and fish-exuded kairomone on the survival and macromolecular profile of Daphnia pulex . Ecotoxicology 21: 601–614. [CrossRef] [PubMed] [Google Scholar]
  • Boersma M, Schöps C, McCauley E. 2001. Nutritional quality of seston for the freshwater herbivore Daphnia galeata × hyalina: biochemical versus mineral limitations. Oecologia 129: 342–348. [CrossRef] [PubMed] [Google Scholar]
  • Bordalo AA, Teixeira R, Wiebe WJ, 2006. A Water Quality Index Applied to an International Shared River Basin: The Case of the Douro River. Environ Manag 38: 910–920. [CrossRef] [Google Scholar]
  • Bossuyt BTA, Janssen CR. 2005. Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity. Environ Pollut 136: 145–154. [Google Scholar]
  • Canedo-Arguelles M, Hawkins CP, Kefford BJ, et al. 2016. Saving freshwater from salts. Science (80-.) 351: 914–916. [CrossRef] [Google Scholar]
  • Castro BB, Antunes SC, Pereira R, Soares AMVM, Gonçalves F. 2005. Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia 543: 221–232. [Google Scholar]
  • Castro BB, Gonçalves F. 2007. Seasonal dynamics of the crustacean zooplankton of a shallow eutrophic lake from the Mediterranean region. Fundam Appl Limnol / Arch für Hydrobiol 169: 189–202. [CrossRef] [Google Scholar]
  • Choi J-Y, Jeong K-S, Kim S-K, La G-H, Chang K-H, Joo G-J. 2014. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecol Inform 24: 177–185. [Google Scholar]
  • Cruz JV, Pacheco D, Porteiro J, et al. 2015. Sete Cidades and Furnas lake eutrophication (São Miguel, Azores): analysis of long-term monitoring data and remediation measures. Sci Total Environ 520: 168–186. [PubMed] [Google Scholar]
  • da Silva NLRF. 2013. Diretiva Quadro da Água vs. Funcionamento do ecossistema: exemplo da Barragem Crestuma-Lever. MSc Thesis, FCUP, University of Porto, Porto, Portugal 69 pp. [Google Scholar]
  • Du H, Chen Z, Mao G, et al. 2019. Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecol Indic 102: 686–692. [Google Scholar]
  • Dudgeon D, Arthington AH, Gessner MO, et al. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81: 163. [CrossRef] [PubMed] [Google Scholar]
  • Elser JJ, Kazuhide H, Jotaro U. 2001. Nutrient limitation reduces food quality for zooplankton Daphnia response to phosphorous enrichment. Ecology 82: 898–903. [Google Scholar]
  • Figueiredo DR, Reboleira ASSP, Antunes SC, et al. 2006. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate Lake. Hydrobiologia 568: 145–157. [Google Scholar]
  • Foley B, Jones ID, Maberly SC, Rippey B. 2012. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw Biol 57: 278–289. [Google Scholar]
  • Freitas EC, Pinheiro C, Rocha O, Loureiro S. 2014. Can mixtures of cyanotoxins represent a risk to the zooplankton? The case study of Daphnia magna Straus exposed to hepatotoxic and neurotoxic cyanobacterial extracts. Harmful Algae 31: 143–152. [CrossRef] [PubMed] [Google Scholar]
  • Gamito S, Coelho S, Pérez-Ruzafa A. 2017. Phyto- and zooplankton dynamics in two ICOLLs from Southern Portugal. Estuar Coast Shelf Sci. [Google Scholar]
  • George JA, Lonsdale DJ, Merlo LR, Gobler CJ, 2015. The interactive roles of temperature, nutrients, and zooplankton grazing in controlling the winter-spring phytoplankton bloom in a temperate, coastal ecosystem, Long Island Sound. Limnol Oceanogr 60: 110–126. [Google Scholar]
  • Ger KA, Hansson L-A, Lürling M. 2014. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshw Biol 59: 1783–1798. [Google Scholar]
  • Ghazy MME-D, Habashy MM, Kossa FI, Mohammady EY. 2009. Effects of Salinity on Survival, Growth and Reproduction of the Water Flea, Daphnia magna . Nat Sci 7: 28–42. [Google Scholar]
  • Gonçalves AMM, Castro BB, Pardal MA, Gonçalves F. 2007. Salinity effects on survival and life history of two freshwater cladocerans (Daphnia magna and Daphnia longispina). Ann Limnol − Int J Lim 43: 13–20. [CrossRef] [Google Scholar]
  • Herbert ER, Boon P, Burgin AJ, et al. 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: art206. [CrossRef] [PubMed] [Google Scholar]
  • Hintz WD, Mattes BM, Schuler MS, et al. 2017. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length. Ecol Appl 27: 833–844. [CrossRef] [PubMed] [Google Scholar]
  • Hülsmann S. 2001. Reproductive potential of Daphnia galeata in relation to food conditions: implications of a changing size-structure of the population. Hydrobiologia 442: 241–252. [Google Scholar]
  • INAG. 2009. Critérios para a classificação do estado das massas de água superficiais − rios e albufeiras. [Google Scholar]
  • Jeppesen E, Brucet S, Naselli-Flores L, et al. 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227. [Google Scholar]
  • Jeppesen E, Nõges P, Davidson TA, et al. 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297. [Google Scholar]
  • Koivisto S. 1995. Is Daphnia magna an ecologically representative zooplankton species in toxicity tests? Environ Pollut 90: 263–267. [Google Scholar]
  • Lampert W, Fleckner W, Rai H, Taylor BE. 1986. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnol Oceanogr 31: 478–490. [Google Scholar]
  • Leitão J, Ribeiro R, Soares AMVM, Lopes I. 2013. Tolerance to copper and to salinity in Daphnia longispina: implications within a climate change scenario. PLoS One 8: e68702. [CrossRef] [PubMed] [Google Scholar]
  • Lari E, Gauthier P, Mohaddes E, Pyle GG. 2017. Interactive toxicity of Ni, Zn, Cu, and Cd on Daphnia magna at lethal and sub-lethal concentrations. J Hazard Mater 334: 21–28. [Google Scholar]
  • Leonard JA, Paerl HW. 2005. Zooplankton community structure, micro-zooplankton grazing impact, and seston energy content in the St. Johns river system, Florida as influenced by the toxic cyanobacterium Cylindrospermopsis raciborskii . Hydrobiologia 537: 89–97. [Google Scholar]
  • Lopes S, Ribeiro F, Wojnarowicz J, et al. 2014. Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution. Environ Toxicol Chem 33: 190–198. [CrossRef] [PubMed] [Google Scholar]
  • Loureiro C, Cuco AP, Claro MT, et al. 2015. Progressive acclimation alters interaction between salinity and temperature in experimental Daphnia populations. Chemosphere 139: 126–132. [PubMed] [Google Scholar]
  • Marinho MC, Lage OM, Catita J, Antunes SC. 2018. Adequacy of planctomycetes as supplementary food source for Daphnia magna . Antonie Van Leeuwenhoek 111: 825–840. [CrossRef] [PubMed] [Google Scholar]
  • Martinez-Haro M, Beiras R, Bellas J, et al. 2015. A review on the ecological quality status assessment in aquatic systems using community based indicators and ecotoxicological tools: what might be the added value of their combination? Ecol Indic 48: 8–16. [Google Scholar]
  • Martínez-Jerónimo F, Martínez-Jerónimo L. 2007. Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study. Ecotoxicol Environ Saf 67: 411–416. [CrossRef] [PubMed] [Google Scholar]
  • McWilliam RA, Baird DJ. 2002. Postexposure feeding depression: a new toxicity endpoint for use in laboratory studies with Daphnia magna . Environ Toxicol Chem 21: 1198–1205. [CrossRef] [PubMed] [Google Scholar]
  • Müller-Navarra D, Lampert W. 1996. Seasonal patterns of food limitation in Daphnia galeata: separating food quantity and food quality effects. J Plankton Res 18: 1137–1157. [Google Scholar]
  • Muylaert K, Declerck S, Van Wichelen J, De Meester L, Vyverman W. 2006. An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnol Ecol Manag Inl Waters 36: 69–78. [CrossRef] [Google Scholar]
  • Muyssen BTA, Bossuyt BTA, Janssen CR. 2005. Inter- and intra-species variation in acute zinc tolerance of field-collected cladoceran populations. Chemosphere 61: 1159–1167. [CrossRef] [PubMed] [Google Scholar]
  • Nauwerck A. 1960. Zur Systematik und Ökologie portugiesischer Planktonalgen. Bol Soc Brot 11: 7–56. [Google Scholar]
  • Nielsen DL, Brock MA, Rees GN, Baldwin DS. 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51: 655. [CrossRef] [Google Scholar]
  • Nisbet M, Verneaux J. 1970. Composantes chimiques des eaux courantes. Discussion et proposition de classes en tant que bases d'interprétation des analyses chimiques. Ann Limnol 6: 161–190. [Google Scholar]
  • Nõges P, Argillier C, Borja Á, et al. 2016. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci Total Environ 540: 43–52. [PubMed] [Google Scholar]
  • Odum E. 1996. Fundamentos de Ecologia. Fundação Calouste Gulbenkian. [Google Scholar]
  • OECD. 2006. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, in: OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems. OECD Publishing, Paris, p. 25. [Google Scholar]
  • Paerl HW. 2009. Controlling Eutrophication along the Freshwater–Marine Continuum: Dual Nutrient (N and P) Reductions are Essential. Estuaries Coasts 32: 593–601. [CrossRef] [Google Scholar]
  • POACL. 2004. Plano de Ordenamento da Albufeira de Crestuma-Lever. Estudos de Base, volume 2-Caraterização da Área de Intervenção. 238 pp. Access in: 10/1/2018 at: http://www.apambiente.pt/ [Google Scholar]
  • Ramdani M, Elkhiati N, Flower RJ, et al. 2001. Open water zooplankton communities in North African wetland lakes: the CASSARINA Project with contributions from. Aquat Ecol 35: 319–333. [Google Scholar]
  • Regulatory Decree 2/88 of January 20. Diário da República n.° 16/1988, Série I de 1988-01-20. Ministério do Planeamento e da Administração do Território. [Google Scholar]
  • Sala OE, Stuart Chapin III F, Armesto JJ, et al. 2000. Global Biodiversity Scenarios for the Year 2100. Science (80-.) 287: 1770–1774. [CrossRef] [PubMed] [Google Scholar]
  • Schallenberg M, Hall C, Burns CW. 2003. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar Ecol Prog Ser 251: 181–189. [Google Scholar]
  • Silva ARR, Cardoso DN, Cruz A, et al. 2015. Ecotoxicity and genotoxicity of a binary combination of triclosan and carbendazim to Daphnia magna . Ecotoxicol Environ Saf 115: 279–290. [CrossRef] [PubMed] [Google Scholar]
  • SNIRH. 2018. Sistema Nacional de Informação de Recursos Hídricos (SNIRH). Instituto da Água, I.P. Access in 16/5/2018 at: http://snirh.pt. [Google Scholar]
  • Stein JR. 1973. Handbook of Phycological Methods − Culture Methods and Growth Measurements. London, UK: Cambridge University Press. [Google Scholar]
  • Van Meter RJ, Swan CM, Leips J, Snodgrass JW. 2011. Road salt stress induces novel food web structure and interactions. Wetlands 31: 843–851. [CrossRef] [Google Scholar]
  • Venâncio C, Ribeiro R, Soares AMVM, Lopes I. 2018. Multigenerational effects of salinity in six clonal lineages of Daphnia longispina . Sci Total Environ 619–620: 194–202. [Google Scholar]
  • Villarroel MJ, Sancho E, Ferrando MD, Andreu E. 2003. Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna . Chemosphere 53: 857–864. [PubMed] [Google Scholar]
  • von Ruckert G, Giani A. 2008. Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? J Plankton Res 30: 1157–1168. [Google Scholar]
  • Xu H, Paerl HW, Qin B, Zhu G, Gaoa G. 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55: 420–432. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.