Free Access
Ann. Limnol. - Int. J. Lim.
Volume 55, 2019
Article Number 21
Number of page(s) 9
Published online 15 November 2019
  • Benetti CJ, Cueto JAR, Fiorentin GL. 2008. Gêneros de Hydradephaga (Coleoptera: Dytiscidae, Gyrinidae, Haliplidae, Noteridae) citados para o Brasil, com chaves para identificação. Biota Neotrop 8: 291–301 [Google Scholar]
  • Bicudo CEM, Menezes M. 2006. Gênero de Algas de Águas Continentais do Brasil Chave para identificação e descrição. Editora Rima, São Carlos. 502 p. [Google Scholar]
  • Birk S, Bonne W, Borja A, et al., 2012. Three hundred ways to assess Europe's surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecol Indic 18: 31–41. [CrossRef] [Google Scholar]
  • Boix D, Biggs J, Céréghino R, Hull AP, Kalettka T, Oertli B. 2012. Pond research and management in Europe: “Small is Beautiful.” Hydrobiologia 689: 1–9. [CrossRef] [Google Scholar]
  • Boyer R, Grue CE. 1995. The need for water quality criteria for frogs. Environ. Health Perspect 103: 352–357. [CrossRef] [PubMed] [Google Scholar]
  • Borcard D, Legendre P. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153: 51–68. [CrossRef] [Google Scholar]
  • Calderon MR, Almeida CA, González P, Jofré MB. 2019. Influence of water quality and habitat conditions on amphibian community metrics in rivers affected by urban activity. Urban Ecosyst 743–755. [CrossRef] [Google Scholar]
  • Carneiro FM, Bini LM, Rodrigues LC. 2010. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecol Indic 10: 249–255. [CrossRef] [Google Scholar]
  • Crump ML, Scott Jr. NJ. 1994. Visual encounter surveys. In: Heyer WR, Donnelly MA, McDiarmid RW, et al. (eds) Measuring and Monitoring Biological Diversity-Standard Methods for Amphibians. Washington: Smithsonian Institution Press, pp. 84–92. [Google Scholar]
  • Cuello ME, Úbeda CA, Bello MT. 2017. Habitat associations for the endangered frog atelognathus patagonicus within the aquatic environment: key microhabitats for conservation. Herpetol Conserv Biol 12: 410–421. [Google Scholar]
  • Curry CJ, Zhou XIN, Baird DJ. 2012. Congruence of biodiversity measures among larval dragonflies and caddisflies from three Canadian rivers. Freshw Biol 57: 628–639. [CrossRef] [Google Scholar]
  • De Marco P. 1998. The Amazonian Campina dragonfly assemblage: patterns in microhabitat use and behavior in a foraging habitat. Odonatologica 27: 239–248. [Google Scholar]
  • De Marco P, Resende DC. 2002. Activity patterns and thermoregulation in a tropical dragonfly assemblage. Odonatologica 31: 129–138. [Google Scholar]
  • De Marco P, Nogueira DS, Correa CC, et al. 2013. Patterns in the organization of Cerrado pond biodiversity in Brazilian pasture landscapes. Hydrobiologia 723: 87–101. [CrossRef] [Google Scholar]
  • De Morais GF, dos Santos Ribas LGd, Ortega JCG, Heino J, Bini LM. 2018. Biological surrogates: a word of caution. Ecol Indic 88: 214–218. [CrossRef] [Google Scholar]
  • Dibble ED, Killgore KJ, Dick GO. 1996. Measurement of plant architecture in seven aquatic plants. J Freshw Ecol 11: 311–318. [CrossRef] [Google Scholar]
  • Downing JA, Prairie YT, Cole JJ, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51: 2388–2397. [CrossRef] [Google Scholar]
  • Frost DR. 2013. Amphibian Species of the World: an Online Reference. In: Am. Museum Nat. Hist. New York, USA. [Google Scholar]
  • Gioria M, Schaffers A, Bacaro G, Feehan J. 2010. The conservation value of farmland ponds: predicting water beetle assemblages using vascular plants as a surrogate group. Biol Conserv 143: 1125–1133. [CrossRef] [Google Scholar]
  • Guareschi S, Abellán P, Laini A, et al. 2015. Cross-taxon congruence in wetlands: assessing the value of waterbirds as surrogates of macroinvertebrate biodiversity in Mediterranean Ramsar sites. Ecol Indic 49: 204–215. [CrossRef] [Google Scholar]
  • Guil N, Cabrero-Sañudo FJ. 2006. Analysis of the species description process for a little known invertebrate group: the limnoterrestrial tardigrades (Bilateria, Tardigrada). Biodivers Conserv 16: 1063–1086. [CrossRef] [Google Scholar]
  • Hassen-Aboushiba AB. 2017. Comparison of waterbird species composition and habitat characteristics of two different wetlands of Malaysia. J Ecol Nat Environ 9: 124–131. [Google Scholar]
  • Heino J. 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecol Indic 10: 112–117. [CrossRef] [Google Scholar]
  • Ilg C, Oertli B. 2016. Effectiveness of amphibians as biodiversity surrogates in pond conservation. Conserv Biol 31: 437–445. [CrossRef] [PubMed] [Google Scholar]
  • Jackson DA. 1995. PROTEST: a Procrustean randomization test of community environment concordance. Ecoscience 2: 297–303. [CrossRef] [Google Scholar]
  • Kallimanis AS, Mazaris AD, Tsakanikas D, Dimopoulos P, Pantis JD, Sgardelis SP. 2012. Efficient biodiversity monitoring: Which taxonomic level to study? Ecol Indic 15: 100–104. [Google Scholar]
  • Kirkman LK, Smith LL, Quintana-Ascencio PF, Kaeser MJ, Golladay SW, Farmer AL. 2012. Is species richness congruent among taxa? Surrogacy, complementarity, and environmental correlates among three disparate taxa in geographically isolated wetlands. Ecol Indic 18: 131–139. [Google Scholar]
  • Landeiro VL, Bini LM, Costa FRC, et al. 2012. How far can we go in simplifying biomonitoring assessments? An integrated analysis of taxonomic surrogacy, taxonomic sufficiency and numerical resolution in a megadiverse region. Ecol Indic 23: 366–373. [Google Scholar]
  • Larsen S, Mancini L, Pace G, Scalici M, Tancioni L. 2012. Weak concordance between fish and macroinvertebrates in Mediterranean streams. PLoS One 7: e51115. [CrossRef] [PubMed] [Google Scholar]
  • Legendre P, Gallagher E. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Legendre P, Legendre L. 1998. Numerical Ecology, 2nd ed. Amsterdam: Elsevier BV, 853 p. [Google Scholar]
  • Lencioni FAA. 2005. Damselflies of Brazil, an illustrated identification guide: I - The non-Coenagrionidae families. All Print Editora, São Paulo, Brazil. 324 p. [Google Scholar]
  • Lencioni FAA. 2006. Damselflies of Brazil, an illustrated indentification guide: II – Coenagrionidae families. All Print Editora, São Paulo, Brazil. [Google Scholar]
  • Lopes PM, Caliman A, Carneiro LS, et al. 2011. Concordance among assemblages of upland Amazonian lakes and the structuring role of spatial and environmental factors. Ecol Indic 11: 1171–1176. [Google Scholar]
  • Lovell S, Hamer M, Slotow R, Herbert D. 2007. Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol Conserv 139: 113–125. [Google Scholar]
  • Negi HR, Gadgil M. 2002. Cross-taxon surrogacy of biodiversity in the Indian Garhwal Himalaya. Biol Conserv 105: 143–155. [Google Scholar]
  • Nieser N, Melo AL. 1997. Os Heterópteros Aquáticos de Minas Gerais - Guia Introdutório com Chave de Identificação para as Espécies de Nepomorpha e Gerromorpha. Editora UFMG, Belo Horizonte. [Google Scholar]
  • Oertli B. 2018. Editorial: Freshwater biodiversity conservation: The role of artificial ponds in the 21st century, Aquat Conserv 28: 264–269. [Google Scholar]
  • Oertli B, Joye DA, Castella E, Juge R, Lehmann A, Lachavanne JB. 2005a. PLOCH: a standardized method for sampling and assessing the biodiversity in ponds. Aquat Conserv Mar Freshw Ecosyst 15: 665–679. [CrossRef] [Google Scholar]
  • Oertli B, Biggs J, Céréghino R, Grillas P, Joly P, Lachavanne JB. 2005b. Conservation and monitoring of pond biodiversity: Introduction. Aquat Conserv Mar Freshw Ecosyst 15: 535–540. [CrossRef] [Google Scholar]
  • Oksanen J, Blanchet FG, Kindt R, et al. 2013. vegan: Community Ecology Package. R Packege Version 20-8. [Google Scholar]
  • Padial AA, Siqueira T, Heino J, et al. 2012a. Relationships between multiple biological groups and classification schemes in a Neotropical floodplain. Ecol Indic 13: 55–65. [Google Scholar]
  • Padial AA, Declerck SAJ, De Meester L, et al. 2012a. Evidence against the use of surrogates for biomonitoring of Neotropical floodplains. Freshw Biol 57: 2411–2423. [Google Scholar]
  • Pakulnicka J, Buczyńska E, Buczyński P, et al. 2015. Are beetles good indicators of insect diversity in freshwater lakes? Oceanol Hydrobiol Stud 44: 487–499. [CrossRef] [Google Scholar]
  • Pelicice FM, Agostinho AA, Thomaz SM. 2005. Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and diel period. Acta Oecol 27: 9–16. [CrossRef] [Google Scholar]
  • Peres-Neto P, Jackson D. 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178. [CrossRef] [PubMed] [Google Scholar]
  • Peres-Neto PR, Legendre P, Dray S, Borcard D. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625. [CrossRef] [PubMed] [Google Scholar]
  • R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, [Google Scholar]
  • Rodrigues ASL, Brooks TM. 2007. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38: 713–737. [Google Scholar]
  • Ruggiero A, Céréghino R, Figuerola J, Marty P, Angélibert S. 2008. Farm ponds make a contribution to the biodiversity of aquatic insects in a French agricultural landscape. C R Biol 331: 298–308. [CrossRef] [PubMed] [Google Scholar]
  • Ruhí A, Chappuis E, Escoriza D, et al. 2014. Environmental filtering determines community patterns in temporary wetlands: a multi-taxon approach. Hydrobiologia 723: 25–39. [Google Scholar]
  • Sato CF, Westgate MJ, Barton PS, et al. 2019. The use and utility of surrogates in biodiversity monitoring programmes. J Appl Ecol 56: 1304–1310. [Google Scholar]
  • Schiesari L, Zuanon J, Azevedo-Ramos C, et al. 2003. Macrophyte rafts as dispersal vectors for fishes and amphibians in the Lower Solimões River, Central Amazon. J Trop Ecol 19: 333–336. [CrossRef] [Google Scholar]
  • Segura MO, Valente-Neto F, Fonseca-Gessner AA. 2011. Chave de famílias de Coleoptera aquáticos (Insecta) do Estado de São Paulo, Brasil. Biota Neotrop 11: 393–412. [CrossRef] [Google Scholar]
  • Silva DP, De Marco P, Resende DC. 2010. Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: A case study. Ecol Indic 10: 744–752. [Google Scholar]
  • Strayer DL, Dudgeon D. 2010. Freshwater biodiversity conservation: recent progress and future challenges. J North Am Benthol Soc 29: 344–358. [CrossRef] [Google Scholar]
  • Souza CA, Machado KB, Nabout JC, et al. 2019. Monitoring simplification in plankton communities using different ecological approaches. Acta Limnol Bras 31: e20. [CrossRef] [Google Scholar]
  • Sulai P, Nurhidayu S, Aziz N, Zakaria M, Barclay H, Azhar B. 2015. Effects of water quality in oil palm production landscapes on tropical waterbirds in Peninsular Malaysia. Ecol Res 30: 941–949. [Google Scholar]
  • Thomaz SM, Cunha ER. 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnol Bras 22: 218–236. [CrossRef] [Google Scholar]
  • Tisseuil C, Cornu J-F., Beauchard O, et al. 2012. Global diversity patterns and cross-taxa convergence in freshwater systems. J Anim Ecol 82: 365–375. [PubMed] [Google Scholar]
  • Utermöhl H. 1958. Zur Vervollkomrnnung ver quantitativen Phytoplankton-Methodic. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38. [Google Scholar]
  • Vollenweider RA. 1974. A manual on methods for measuring primary production in aquatic environments. London: Blackwell Scientific Publications, 213 p. [Google Scholar]
  • Westgate MJ, Barton PS, Lane PW, Lindenmayer DB. 2014. Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nat Commun 5: 1–8. [Google Scholar]
  • Williams P, Whitfield M, Biggs J, et al. 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115: 329–341. [Google Scholar]
  • Yardi KD, Bharucha E, Girade S. 2019. Post-restoration monitoring of water quality and avifaunal diversity of Pashan Lake, Pune, India using a citizen science approach. Freshw Sci 38: 332–341. [Google Scholar]
  • Zimmerman BL. 1994. Audio Strip Transects. In: Heyer WR, Donnelly MA, McDiarmid RW, et al. (eds) Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians. Washington: Mithsonian Institution Press, pp 92–97. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.