Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 55, 2019
Article Number 6
Number of page(s) 11
DOI https://doi.org/10.1051/limn/2019005
Published online 04 April 2019
  • Adrian R, O'Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M. 2009. Lakes as sentinels of climate change. Limnol Oceanogr 54: 2283–2297. [CrossRef] [PubMed] [Google Scholar]
  • Austin JA, Colman SM. 2007. Lake superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys Res Lett 34: L06604. [CrossRef] [Google Scholar]
  • Baba K, Tada M, Kawajiri T, Kuwahara Y. 1999. Effects of temperature and salinity on spawning of the brackish water bivalve Corbicula japonica in Lake Abashiri, Hokkaido, Japan. Mar Ecol Prog Ser 180: 213–221. [CrossRef] [Google Scholar]
  • Beaugrand G. 2004. The North Sea regime shift: evidence, causes, mechanisms and consequences. Prog Oceanogr 60: 245–262. [CrossRef] [Google Scholar]
  • Blenckner T, Adrian R, Arvola L, Järvinen M, Nõges P, Nõges T. Pettersson K, Weyhenmeyer GA. 2010. The Impact of climate change on lakes in Northern Europe. In: George G (ed.), Climate and Lake Impacts in Europe. Springer Aquatic Ecology series, pp. 339–358. [Google Scholar]
  • Brown LC, Duguay CR. 2010. The response and role of ice cover in lake-climate interactions. Prog Phys Geogr 34: 671–704. [CrossRef] [Google Scholar]
  • Bui MT, Kuzovlev VV, Zhenikov YN, Füreder L, Seidel J, Schletterer M. 2018. Water temperatures in the headwaters of the Volga River: trend analyses, possible future changes, and implications for a pan-European perspective. River Res Appl 34: 671–704. [Google Scholar]
  • Bukowska A, Kaliński T, Koper M, Kostrzewska-Szlakowska I, Kwiatowski J, Mazur-Marzec H, Jasser I. 2017. Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities. Sci Rep 7: 8342. [CrossRef] [PubMed] [Google Scholar]
  • Carpenter SR, Stanley EH, Vander Zanden MJ. 2011. State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36: 75–99. [CrossRef] [Google Scholar]
  • Choiński A. 2006. Katalog jezior Polski. Poznań: Wyd. Nauk UAM. [Google Scholar]
  • Choiński A, Ptak M, Skowron R, Strzelczak A. 2015. Changes in ice phenology on polish lakes from 1961 to 2010 related to location and morphometry. Limnologica 53: 42–49. [CrossRef] [Google Scholar]
  • Conversi A, Umani SF, Peluso T, Molinero JC, Santojanni A, Edwards M. 2010. The Mediterranean sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins (review). PLoS ONE 5: e10633. [CrossRef] [PubMed] [Google Scholar]
  • Czernecki B, Ptak M. 2018. The impact of global warming on lake surface water temperature in Poland − the application of empirical-statistical downscaling, 1971–2100. J Limnol 77: 330–348. [Google Scholar]
  • Dąbrowski M, Marszelewski W, Skowron R. 2004. The trends and dependencies between air and water temperatures in lakes in northern Poland from 1961–2000. Hydrol Earth Syst Sci 8: 79–87. [CrossRef] [Google Scholar]
  • Edmundson JA, Mazumder A. 2002. Regional and hierarchical perspectives of thermal regimes in subarctic, Alaskan lakes. Freshw Biol 47: 1–17. [CrossRef] [Google Scholar]
  • Elliott JA. 2010. The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biol 16: 864–876. [Google Scholar]
  • Fang X, Stefan HG. 2009. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnol Oceanogr 54: 2359–2370. [Google Scholar]
  • Funari E, Manganelli M, Buratti FM, Testai E. 2017. Cyanobacteria blooms in water: Italian guidelines to assess and manage the risk associated to bathing and recreational activities. Sci Total Environ 598: 867–880. [CrossRef] [PubMed] [Google Scholar]
  • Gallina N, Anneville O, Beniston M. 2011. Impacts of extreme air temperatures on cyanobacteria in five deep peri-alpine lakes. J Limnol 70: 186–196. [CrossRef] [Google Scholar]
  • Gao S, Stefan HG. 1999. Multiple linear regression for lake ice and lake temperature characteristics. J Cold Reg Eng 13: 59–77. [CrossRef] [Google Scholar]
  • George G, Hurley M, Hewitt D. 2007. The impact of climate change on the physical characteristics of the larger lakes in the English Lake District. Freshw Biol 52: 1647–1666. [CrossRef] [Google Scholar]
  • Gilbert RO. 1987. Statistical Methods for Environmental Pollution Monitoring. New York: Van Nostrand Reinhold Co., p. 320. [Google Scholar]
  • Girjatowicz JP. 2008. The relationships between water level in coastal lakes and sea water of Polish coast of Baltic Sea. Prz Geofiz 53: 141–153. [Google Scholar]
  • Goebel SE, Baer J, Geist J. 2017. Effects of temperature and rearing density on growth of juvenile European whitefish (Coregonus macrophthalmus) in aquaculture. Fund Appl Limnol 189: 257–266. [CrossRef] [Google Scholar]
  • Groß-Wittke A, Selge F, Gunkel G. 2013. Effects of water warming on bank filtration: Experimental enclosure studies. Wit Trans Ecol Environ 171: 209–224. [CrossRef] [Google Scholar]
  • Haberman J, Haldna M. 2017. How are spring zooplankton and autumn zooplankton influenced by water temperature in a polymicticlake? Proc Est Acad Sci 66: 264–278. [CrossRef] [Google Scholar]
  • Haddout S, Priya KL, Boko M. 2018. Thermal response of Moroccan lakes to climatic warming: first results. Ann Limnol − Int J Limnol 54: 2. [CrossRef] [Google Scholar]
  • Hampton SE, Izmest'eva LR, Moore MV, Katz SL, Dennis B, Silow EA. 2008. Sixty years of environmental change in the world's largest freshwater lake-Lake Baikal Siberia. Glob Change Biol 14: 1947–1958. [CrossRef] [Google Scholar]
  • Hayden B, Myllykangas JP, Rolls RJ, Kahilainen KK. 2017. Climate and productivity shape fish and invertebrate community structure in subarctic lakes. Freshw Biol 62: 990–1003. [CrossRef] [Google Scholar]
  • Hren MT, Sheldon ND. 2012. Temporal variations in lake water temperature: paleoenvironmental implications of lake carbonate δ18 O and temperature records. Earth Planet Sci Lett 337–338: 77–84. [CrossRef] [Google Scholar]
  • Jansen W, Hesslein RH. 2004. Potential effects of climate warming on fish habitats in temperate zone lakes with special reference to Lake 239 of the experimental lakes area (ELA), north-western Ontario. Environ Biol Fishes 70: 1–22. [CrossRef] [Google Scholar]
  • Jeppesen E, Mehner T, Winfield IJ, Kangur K, Sarvala J, Gerdeaux D, Rask M, Malmquist HJ, Holmgren K, Volta P, Romo S, Eckmann R, Sandström A, Blanco S, Kangur A, Ragnarsson Stabo H, Tarvainen M, Ventelä A-M, Søndergaard M, Lauridsen TL, Meerhoff M. 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 1–39. [CrossRef] [Google Scholar]
  • Kangur K, Ginter K, Kangur P, Kangu, A, Nõges P, Laas A. 2016. Changes in water temperature and chemistry preceding a massive kill of bottom-dwelling fish: an analysis of high-frequency buoy data of shallow Lake Vortsjarv (Estonia). Inland Waters 6: 535–542. [CrossRef] [Google Scholar]
  • Kangur K, Kangur P, Ginter K, Orru K, Haldna M, Möls T, Kangur A. 2013. Long-term effects of extreme weather events and eutrophication on the fish community of shallow lake Peipsi (Estonia/Russia). J Limnol 72: 376–387. [CrossRef] [Google Scholar]
  • Kendall MG, Stuart A. 1968. The Advanced Theory of Statistics. London, UK: Charles Griffin (Ltd.). [Google Scholar]
  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitok, LM, Tamatamah R, Vadeboncoeur Y, Mcintyre PB. 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett 42: 4981–4988. [CrossRef] [Google Scholar]
  • Li H. Y, Xu J, Xu RQ. 2013. The effect of temperature on the water quality of lake. Adv Mat Res 821-822: 1001–1004. [Google Scholar]
  • Magee MR, Wu CH. 2017. Effects of changing climate on ice cover in three morphometrically different lakes. Hydrol Process 31: 308–323. [CrossRef] [Google Scholar]
  • Magee MR, Wu CH, Robertson DM, Lathrop RC, Hamilton DP. 2016. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrol Earth Syst Sci 20: 1681–1702. [CrossRef] [Google Scholar]
  • Michelutti N, Labaj AL, Grooms C, Smol JP. 2016. Equatorial mountain lakes show extended periods of thermal stratification with recent climate change. J Limnol 75: 403–408. [Google Scholar]
  • Mooij WM, Hülsmann S, De Senerpont Domis LN, Nolet BA, Bodelier P.LE, Boers PCM, Dionisio Pires LM, Gons HJ, Ibelings BW, Noordhuis R, Portielje R, Wolfstein K, Lammens EHRR. 2005. The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39: 381–400. [CrossRef] [Google Scholar]
  • Nõges T, Tuvikene L, Nõges P. 2010. Contemporary trends of temperature, nutrient loading, and water quality in large Lakes Peipsi and Võrtsjärv, Estonia. Aquat Ecosyst Health 13: 143–153. [CrossRef] [Google Scholar]
  • O'Reilly CM, Sharma S, Gray DK, et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42: 10773–10781. [CrossRef] [Google Scholar]
  • Pełechata A, Pełechaty M, Pukacz A. 2015. Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquat Bot 124: 10–18. [CrossRef] [Google Scholar]
  • Piontek M, Czyżewska W, Mankiewicz-Boczek J. 2017. The occurrence of cyanobacteria blooms in the Obrzyca river catchment area (Poland), a source of drinking water. Pol J Environ Stud 26: 1191–1201. [CrossRef] [Google Scholar]
  • Ptak M, Nowak B. 2016. Variability of oxygen-thermal conditions in selected lakes in Poland. Ecol Chem Eng S 23: 639–650. [Google Scholar]
  • Ptak M, Sojka M., Choiński A, Nowak B. 2018a. Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water 10: 580. [CrossRef] [Google Scholar]
  • Ptak M, Tomczyk A. M, Wrzesiński D. 2018b. Effect of teleconnection patterns on changes in water temperature in Polish lakes. Atmosphere 9: 66. [CrossRef] [Google Scholar]
  • Ptak M, Wrzesiński D, Choiński A. 2017. Long-term changes in the hydrological regime of high mountain lake Morskie Oko (Tatra Mountains, Central Europe). J Hydrol Hydromech 65: 146–153. [CrossRef] [Google Scholar]
  • Roubeix V, Daufresne M, Argillier C, Dublon J, Maire A, Nicolas D, Raymond JC, Danis PA. 2017. Physico-chemical thresholds in the distribution of fish species among French lakes. Knowl Manag Aquat Ecol 418: 418. [Google Scholar]
  • Schneider P, Hook S. 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophys Res Lett 37: L22405. [CrossRef] [Google Scholar]
  • Sharma, S, Gray DK, Read JS, et al. 2015. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci Data 2: 150008. [CrossRef] [Google Scholar]
  • Shimoda Y, Azim M. E, Perhar G, Ramin M, Kenney MA, Sadraddini S, Gudimov A, Arhonditsis GB. 2011. Our current understanding of lake ecosystem response to climate change: what have we really learned from the north temperate deep lakes? J Great Lakes Res 37: 173–193. [CrossRef] [Google Scholar]
  • Skowron R. 2011. The differentiation and the changeability of choin elements of the thermal regime of water in lakes on Polish Lowland. Toruń: Wyd. Nauk. UMK. [Google Scholar]
  • Skowron R. 2012. Spring warming period of Polish lake waters in a yearly thermal cycle. Limnol Rev 12: 147–157. [CrossRef] [Google Scholar]
  • Starkel L. 2002. Wartości progowe w przekształceniu systemów naturalnych środowiska przyrodniczego Karpat, Wyżyny Małopolskiej i Kotlin Podkarpackich. In: Górka Z, Jelonek A (eds.), Geograficzne uwarunkowania rozwoju Małopolski. Kraków: IGiGP UJ. [Google Scholar]
  • Wahl B, Peeters F. 2014. Effect of climatic changes on stratification and deep-water renewal in Lake Constance assessed by sensitivity studies with a 3D hydrodynamic model. Limnol Oceanogr 59: 1035–1052. [CrossRef] [Google Scholar]
  • Wang Z, Liu WG. 2013. Calibration of the U37 K′ index of long-chain alkenones with the in-situ water temperature in Lake Qinghai in the Tibetan Plateau. Chin Sci Bull 58: 803–808. [CrossRef] [Google Scholar]
  • Woolway RI, Dokulil MT, Marszelewski W, Schmid M, Bouffard D, Merchant CJ. 2017. Warming of Central European lakes and their response to the 1980s climate regime shift. Clim Change 142: 505–520. [Google Scholar]
  • Woolway RI, Merchant CJ. 2017. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci Rep-Uk 7: 4130. [CrossRef] [PubMed] [Google Scholar]
  • Wrzesiński D, Choiński A, Ptak M. 2015. Effect of the North Atlantic oscillation on the thermal characteristics of lakes in Poland. Acta Geophys 63: 863–883. [CrossRef] [Google Scholar]
  • Yao X, Li L, Zhao J, Sun M, Li J, Gong P, An L. 2016. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011. J Geogr Sci 26: 70–82. [CrossRef] [Google Scholar]
  • Zhong Y, Notaro M, Vavrus SJ, Foster MJ. 2016. Recent accelerated warming of the Laurentian Great Lakes: physical drivers. Limnol Oceanogr 61: 1762–1786. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.