Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 55, 2019
Article Number 7
Number of page(s) 9
DOI https://doi.org/10.1051/limn/2019006
Published online 19 April 2019
  • Arzul G, Seguel M, Guzman L, Denn EL. 1999. Comparison of allelopathic properties in three toxic Alexandrium species. J Exp Mar Biol Ecol 232: 285–295. [CrossRef] [Google Scholar]
  • Bagchi SN. 1995. Structure and site of action of an algicide from a cyanobacterium, Oscillatoria late-virens . J Appl Phycol 10: 1–9. [Google Scholar]
  • Bagchi SN, Palod A, Chauhan VS. 1990. Algicidal properties of a bloom forming alga, Oscillatoria sp. J Basic Microbiol 30: 21–29. [CrossRef] [Google Scholar]
  • Bagchi SN, Ray S. 2001. Extraction and purification of an algicidal metabolites from a cyanobacterium Oscillatoria latevirens . Indian J Microbiol 41: 163–167. [Google Scholar]
  • B-Béres V, Vasas G, Dobronoki D, Gonda S, Nagy SA, Bácsi I. 2015. Effects of cylindrospermopsin producing cyanobacterium and its crude extracts on a benthic green alga-competition or allelopathy? Mar Drugs 13: 6703–6722. [CrossRef] [Google Scholar]
  • Bittencourt-Oliveira MDC, Chia MA, Camargo-Santos D, Dias CTS. 2016. The effect of saxitoxin and non-saxitoxin extracts of Cylindrospermopsis raciborskii (cyanobacteria) on cyanobateria and green microalgae. J Appl Phycol 28: 241–250. [CrossRef] [Google Scholar]
  • Cai L, Zhu G, Zhu M, Yang G, Zhao L. 2012. Succession of phytoplankton structure and its relationship with algae bloom in littoral zone of Meiliang Bay, Taihu Lake. Eco Sci 31: 345–351 (in Chinese with English abstract). [Google Scholar]
  • Chen YW, Qin B, Teubner K, Dokulil M. 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25: 445–453. [Google Scholar]
  • Cirés S, Ballot AA. 2016. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54: 21–43. [CrossRef] [PubMed] [Google Scholar]
  • Davis TW, Berry DL, Boyer GL, Gobler J. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Harmful Algae 8: 715–725. [CrossRef] [Google Scholar]
  • Dittmann E, Wiegand C. 2006. Cyanobacterial toxins − occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50: 7–17. [CrossRef] [PubMed] [Google Scholar]
  • Doan NT, Rickards RW, Rothschild JM, Smith GD. 2000. Allelopathic actions of the alkaloid 12-epi-haplindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix . J Appl Phycol 12: 409–416. [CrossRef] [Google Scholar]
  • Dong J, Gao YN, Chang MY, Ma HH, Han K, Tao X, Li Y. 2018. Colony formation by the green alga Chlorella vulgaris in response to the competitor Ceratophyllum demersum . Hydrobiologia 805: 177–187. [CrossRef] [Google Scholar]
  • Dong J, Lu JJ, Li GB, Song LR. 2013. Influences of a submerged macrophyte on colony formation and growth of a green alga. Aquat Biol 19: 265–274. [CrossRef] [Google Scholar]
  • Dong J, Zhou WC, Song LR, Li GB. 2015. Responses of phytoplankton functional groups to simulated winter warming. Ann Limnol − Int J Lim 51: 199–210. [CrossRef] [Google Scholar]
  • Dunker S, Jakob T, Wilhelm C. 2013. Contrasting effects of the cyanobacterium Microcystis aeruginosa, on the growth and physiology of two green algae, Oocystis marsonii and Scenedesmus obliquus, revealed by flow cytometry. Freshw Biol 58: 1573–1587. [CrossRef] [Google Scholar]
  • El-Sheekh MM, Khairy HM, El-Shenody RA. 2010. Allelopathic effects of cyanobacterium Microcystis aeruginosa Kützing on the growth and photosynthetic pigments of some algal species. Allelopath J 26: 275–289. [Google Scholar]
  • Fergola P, Cerasuolo M, Pollio A, Pinto G, DellaGreca M. 2007. Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: experiments and mathematical model. Ecol Model 208: 205–214. [CrossRef] [Google Scholar]
  • Gan NQ, Xiao Y, Zhu L, Wu ZX, Liu J, Hu CL, Song LR. 2012. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ Microbiol 14: 730–742. [CrossRef] [PubMed] [Google Scholar]
  • Gantar M, Berry JP, Thomas S, Wang M, Perez R, Rein KS. 2008. Allelopathic activity among cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol Ecol 64: 55–64. [CrossRef] [PubMed] [Google Scholar]
  • Gleason FK, Baxa CA. 1986. Activity of the natural algicide, cyanobacterin, on eukaryotic microorganisms. FEMS Microbiol Lett 68: 77–81. [CrossRef] [Google Scholar]
  • Gleason FK, Case DE. 1986. Activity of the natural algicide, cyanobacterin, on angiosperms. Plant Physiol 80: 834–838. [CrossRef] [Google Scholar]
  • Gleason FK, Paulson JL. 1984. Site of action of natural algicida, cyanobacterin in blue green alga, Synechococcus sp. Arch Microbiol 138: 273–277. [CrossRef] [Google Scholar]
  • Graneli E, Weberg M, Salomon PS. 2008. Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8: 94–102. [CrossRef] [Google Scholar]
  • Gross EM. 2003. Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22: 313–339. [CrossRef] [Google Scholar]
  • Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis, spp. Harmful Algae 54: 4–20. [CrossRef] [PubMed] [Google Scholar]
  • Jiang H, Zhao DH, Zhao H, Cai Y, Xu DL, Zhou CF, Leng X, Xie D. 2015. Density-dependent interactions between Hydrilla verticillata (L.F.) Royle and phytoplankton: a mesocosm experiment. Clean-Soil Air Water 43: 1623–1632. [Google Scholar]
  • Jin Q, Dong SL. 2003. Comparative studies on the allelopathic effects of two different strains of U. pertusa on Heterosigma akashiwo and Alexandrium tamarense . J Exp Mar Biol Ecol 293: 41–55. [CrossRef] [Google Scholar]
  • Kaebernick M, Neilan BA. 2001. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol Ecol 35: 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Kearns KD, Hunter MD. 2001. Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb Ecol 42: 80–86. [PubMed] [Google Scholar]
  • Kearns KD, Hunter MD. 2002. Algal extracellular products suppress Anabaena flos-aquae heterocyst spacing. Microb Ecol 43: 174–180. [CrossRef] [PubMed] [Google Scholar]
  • Kuwata A, Miyazaki T. 2000. Effects of ammonium supply rates on competition between Microcystis novacekii (cyanobacteria) and Scenedesmus quadricauda (Chlorophyta): simulation study. Ecol Modell 135: 81–87. [CrossRef] [Google Scholar]
  • Leão PN, Vasconcelos MT, Vasconcelos VM. 2009. Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35: 271–282. [CrossRef] [PubMed] [Google Scholar]
  • Leflaive J, Lacroix G, Nicaise Y, Ten-Hage L. 2008. Colony induction and growth inhibition in Desmodesmus quadrispina (Chlorococcales) by allelochemicals released from the filamentous alga Uronema confervicolum (Ulotrichales). Environ Microbiol 10: 1536–1546. [CrossRef] [PubMed] [Google Scholar]
  • Legrand C, Rengefors K, Fistarol GO, Granli E. 2003. Allelopathy in phytoplankton − biochemical, ecological and evolutionary aspects. Phycologia 42: 406–419. [CrossRef] [Google Scholar]
  • Li L, Gao N, Deng Y, Yao J, Zhang K. 2012. Characterization of intracellular and extracellular algae organic matters (AOM) of Microcystis aeruginosa and formation of AOM-associated disinfection byproducts and odor and taste compounds. Water Res 46: 1233–1240. [CrossRef] [PubMed] [Google Scholar]
  • Lichtenthaler HK, Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In: Wrolstad RE, Acree TE, An H, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, and Sporns P. (eds.), Current Protocols in Food Analytical Chemistry. London, New York: John Wiley & Sons, Inc., pp. F4.3.1–F4.3.8. [CrossRef] [Google Scholar]
  • Lund JWG, Kipling C, Le Cren ED, 1958. The inverted microscope method of estimating algalnumbers and the statistical basis of estimation by counting. Hydrobiologia 11: 143–170. [CrossRef] [Google Scholar]
  • Lürling M. 2006. Effects of a surfactant (ffd-6) on Scenedesmus morphology and growth under different nutrient conditions. Chemosphere 62: 1351–1358. [CrossRef] [PubMed] [Google Scholar]
  • Lürling M, Van Donk E. 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol Oceanogr 42: 783–788. [CrossRef] [Google Scholar]
  • Ma ZL, Fang TX, Thring RW, Li YB, Yu HG, Zhou Q, Zhao M. 2015. Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris . Harmful Algae 48: 21–29. [CrossRef] [PubMed] [Google Scholar]
  • McCracken MD, Middaugh RE, Middaugh RS. 1980. A chemical characterization of an algal inhibitor obtained from Chlamydomonas . Hydrobiologia 70: 271–276. [CrossRef] [Google Scholar]
  • Mello MME, Soares MCS, Roland F, Lürling M. 2012. Growth of inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii . J Plankton Res 34: 987–994. [CrossRef] [Google Scholar]
  • Okello W, Portmann C, Erhard M, Gademann K, Kurmayer R. 2010. Occurrence of microcystin-producing cyanobacteria in Ugandan freshwater habitats. Environ Toxicol 25: 367–380. [CrossRef] [PubMed] [Google Scholar]
  • Paerl HW, Huisman J. 2008. Blooms like it hot. Science 320: 57–58. [Google Scholar]
  • Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner S. 2010. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu China): the need for a dual nutrient (N & P) management strategy. Water Res 45: 1973–1983. [Google Scholar]
  • Park MH, Chung IM, Ahmad A, Kim BH, Hwang SJ. 2009. Growth inhibition of unicellular and colonial Microcystis strains (Cyanophyceae) by compounds isolated from rice (Oryza sativa) hulls. Aquat Bot 90: 309–314. [CrossRef] [Google Scholar]
  • Paxinos R, Mitchell JG. 2000. A rapid Utermöhl method for estimating algal numbers. J Plankton Res 22: 2255–2262. [CrossRef] [Google Scholar]
  • Perreault F, Matias MS, Melegari SP, Pinto CRSC, Creppy K, Popovic R, Matias WG. 2011. Investigation of animal and algal bioassays for reliable saxitoxin ecotoxicity and cytotoxicity risk evaluation. Ecotoxicol Environ Saf 74: 1021–1026. [CrossRef] [PubMed] [Google Scholar]
  • Pflugmacher S. 2002. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystem. Environ Toxicol 17: 407–413. [CrossRef] [PubMed] [Google Scholar]
  • Pratt DM. 1966. Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol Oceanogr 11: 447–455. [CrossRef] [Google Scholar]
  • Rippka R, Rippk R, Deruelle J, Waterbury J, Herdman M, Stanier R. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61. [Google Scholar]
  • Rzymski P, Poniedziałek B, Kokociński M, Jurczak T, Lipski D, Wiktorowicz K. 2014. Interspecific allelopathy in cyanobacteria: cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa . Harmful Algae 35: 1–8. [CrossRef] [Google Scholar]
  • Sedmak B, Eleršek T. 2005. Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb Ecol 50: 298–305. [CrossRef] [PubMed] [Google Scholar]
  • Sedmak B, Kosi G. 1998. The role of microcystins in heavy cyanobacterial bloom formation. J Plankton Res 20: 691–708. [CrossRef] [Google Scholar]
  • Srivastava A, Juttner F, Strasser RJ. 1998. Action of the allelochemical, fischerellin A, on photosystem II. Biochim Biophys Acta 1364: 326–336. [CrossRef] [PubMed] [Google Scholar]
  • Srivastava R, Ray S, Bagchi SN. 2001. Action of an algicide from a cyanobacterium, Oscillatoria latevirens, on photosystem II. J Exp Biol 39: 1268–1273. [Google Scholar]
  • Suikkanen S, Fistarol GO, Graneli E. 2004. Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308: 85–101. [CrossRef] [Google Scholar]
  • Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A, Kaplan A. 2002. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47: 1656–1663. [CrossRef] [Google Scholar]
  • Sun F, Pei H, Hu W, Song M. 2012. A multi-technique approach for the quantification of Microcystis aeruginosa FACHB-905 biomass during high algae-laden periods. Environ Technol 33: 1773–1779. [CrossRef] [PubMed] [Google Scholar]
  • Valdor R, Aboal M. 2007. Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 49: 769–779. [CrossRef] [PubMed] [Google Scholar]
  • Van Donk E, Ianora A, Vos M. 2011. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668: 3–19. [CrossRef] [Google Scholar]
  • Wang LC, Zi JM, Xu RB, Hilt S, Hou XL, Chang XX. 2017. Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: evidence from exudates addition and co-culturing. Harmful Algae 61: 56–62. [CrossRef] [Google Scholar]
  • Weir TL, Park SW, Vivanco JM. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7: 472–479. [CrossRef] [PubMed] [Google Scholar]
  • Xu R, Hilt S, Pei Y, Yin L, Wang X, Chang X. 2016. Growth phase-dependent allelopathic effects of cyanobacterial exudates on Potamogeton crispus L. seedlings. Hydrobiologia 767: 137–149. [CrossRef] [Google Scholar]
  • Xu R, Wu F, Hilt S, Wu C, Wang X, Chang X. 2015. Recovery limitation of endangered Ottelia acuminata by allelopathic interaction with cyanobacteria. Aquat Ecol 49: 1–10. [CrossRef] [Google Scholar]
  • Yang J, Deng XR, Xian QM, Xin Q, Li AM. 2014. Allelopathic effect of Microcystis aeruginosa on Microcystis wesenbergii: microcystin-LR as a potential allelochemicals. Hydrobiologia 727: 65–73. [CrossRef] [Google Scholar]
  • Żak A, Musiewicz K, Kosakowska A. 2012. Allelopathic activity of the Baltic cyanobacteria against microalgae. Estuar Coast Shelf Sci 112: 4–10. [CrossRef] [Google Scholar]
  • Zhang P, Zhai CM, Wang XX, Liu CH, Jiang JH, Xue YR. 2013. Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. J Appl Phycol 25: 555–565. [CrossRef] [Google Scholar]
  • Zhang T, Zheng C, Hu W, Xu W, Wang H. 2010. The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa . J Appl Phycol 22: 71–77. [CrossRef] [Google Scholar]
  • Zheng ZM, Bai PF, Lu KH, Jin CH, Zhang L. 2008. Growth characteristics and competitive parameters of Microcystis aeruginosa and Scenedesmus obliquus at different temperatures. Acta Hydrobiol Sin 32: 720–728 (in Chinese with English abstract). [CrossRef] [Google Scholar]
  • Zheng GL, Xu RB, Chang XX, Hilt S, Cheng W. 2013. Cyanobacteria can allelopathically inhibit submerged macrophytes: effects of Microcystis aeruginosa extracts and exudates on Potamogeton malaianus . Aquat Bot 109: 1–7. [CrossRef] [Google Scholar]
  • Zhu XX, Wang J, Chen QW, Chen G, Huang Y, Yang Z. 2016. Costs and trade-offs of grazer induced defenses in Scenedesmus under deficient resource. Sci Rep 6: 22594. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.