Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 33
Number of page(s) 13
Published online 23 November 2018
  • Adamczuk M, Mieczan T, Nawrot D, Rechulicz J. 2015. Indirect effect of environmental factors on interactions between microbial and classical food webs in freshwater ecosystems. Ann Limnol - Int J Lim: 49–58. [CrossRef] [Google Scholar]
  • Araújo JN, Mackinson S, Stanford RJ, Sims DW, Southward AJ, Hawkins SJ, Ellis JR, Hart PJ. 2006. Modelling food web interactions, variation in plankton production, and fisheries in the western english channel ecosystem. Mar Ecol Prog Ser 309: 175–187. [CrossRef] [Google Scholar]
  • Arnold, DE. 1971. Ingestion, assimilation, survival, and reproduction by Daphnia pulex fed seven species of blue‐green algae. Limnol Oceanogr 16: 906–920. [CrossRef] [Google Scholar]
  • Auer B, Elzer U, Arndt H. 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J Plankton Res 26: 697–709. [CrossRef] [Google Scholar]
  • Badsi H, Ali HO, Loudiki M, El Hafa M, Chakli R, Aamiri A. 2010. Ecological factors affecting the distribution of zooplankton community in the Massa Lagoon (Southern Morocco). Afr J Environ Sci Tech 4: 751–762. [Google Scholar]
  • Beaver JR, Jensen DE, Casamatta DA, Tausz CE, Scotese KC, Buccier KM, Teacher CE, Rosati TC, Minerovic AD, Renicker TR. 2013. Response of phytoplankton and zooplankton communities in six reservoirs of the middle Missouri river (USA) to drought conditions and a major flood event. Hydrobiologia 705: 173–189. [CrossRef] [Google Scholar]
  • Benedetti F, Gasparini S, Ayata SD. 2015. Identifying copepod functional groups from species functional traits. J Plankton Res 38: 159–166. [CrossRef] [PubMed] [Google Scholar]
  • Benedetti F, Vogt M, Righetti D, Guilhaumon F, Ayata SD. 2018. Do functional groups of planktonic copepods differ in their ecological niches? J Biogeogr 45: 604–616. [CrossRef] [Google Scholar]
  • Bērzinš B, Pejler B. 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231. [CrossRef] [Google Scholar]
  • Brandl, Z. 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546: 475–489. [CrossRef] [Google Scholar]
  • Cai Q, Cao M, Huang X. 2007. Protocols for Standard Observation and Measurement in Aquatic Ecosystems. Beijing: Chinese Environmental Science Press (in Chinese). [Google Scholar]
  • Chang K-H., Hideyuki D, Nishibe Y, Nakano S-I. 2010. Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. Priodonta and A. girodi in pond ecosystems. J Limnol 69: 209–216. [CrossRef] [Google Scholar]
  • Chen Q-C. 1974. On planktonic copepods of the yellow sea and the East China Sea, II. Cyclopoida and Harpacticoida. Studia Marina Sinica 9: 1–24. [Google Scholar]
  • Duggan I, Green J, Shiel R. 2001. Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia 446: 155–164. [CrossRef] [Google Scholar]
  • Dumont HJ. 1983. Biogeography of rotifers. Biology of Rotifers, Berlin: Springer, pp. 19–30. [CrossRef] [Google Scholar]
  • Fernando C, Tudorancea C, Mengestou S. 1990. Invertebrate zooplankton predator composition and diversity in tropical lentic waters. In: Dumont HJ, Tundisi JG, Roche K., eds. Intrazooplankton Predation. Berlin: Springer, pp. 13–31. [CrossRef] [Google Scholar]
  • Fussmann G. 1996. The importance of crustacean zooplankton in structuring rotifer and phytoplankton communities: an enclosure study. J Plankton Res 18: 1897–1915. [CrossRef] [Google Scholar]
  • Galkovskaja G. 1987. Planktonic rotifers and temperature. Hydrobiologia 147: 307–317. [CrossRef] [Google Scholar]
  • Ger KA, Hansson LA, Lürling M. 2014. Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshw Biol 59: 1783–1798. [Google Scholar]
  • Gilbert JJ. 2014. Morphological and behavioral responses of a rotifer to the predator Asplanchna. J Plankton Res 36: 1576–1584. [CrossRef] [Google Scholar]
  • Guo N, Zhang M, Yu Y, Qian S, Li D, Kong F. 2009. Crustacean zooplankton communities in 13 lakes of Yunnan-Guizhou plateau: relationship between crustacean zooplankton biomass or size structure and trophic indicators after invasion by exotic fish. Ann Limnol - Int J Lim 45: 279–288. [CrossRef] [Google Scholar]
  • Haney J, Aliberti M, Allan E, Allard S, Bauer D, Beagen W, Bradt S, Carlson B, Carlson S, Doan U. 2013. An image-based key to the zooplankton of North America, University of New Hampshire Center for Freshwater Biology. [Google Scholar]
  • Hébert M-P, Beisner BE, Maranger R. 2016. Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. J Plankton Res 39: 3–12. [CrossRef] [Google Scholar]
  • Hébert MP, Beisner BE, Maranger R. 2016. A meta‐analysis of zooplankton functional traits influencing ecosystem function. Ecology 97: 1069–1080. [PubMed] [Google Scholar]
  • Holst H, Zimmermann H, Kausch H, Koste W. 1998. Temporal and spatial dynamics of planktonic rotifers in the Elbe estuary during spring. Estuar Coast Shelf Sci 47: 261–273. [Google Scholar]
  • Huang X. 1981. Application of the simplified method of weight determination to various species of planktonic rotifers in lake Donghu, Wuhan. Acta Hydrobiol Sin 7: 409–416. [Google Scholar]
  • Ismail AH, Adnan AAM. 2016. Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Trop Life Sci Res 27: 31. [CrossRef] [PubMed] [Google Scholar]
  • Jónasdóttir SH, Visser AW, Richardson K, Heath MR. 2015. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc Natl Acad Sci USA 112: 12122–12126. [CrossRef] [Google Scholar]
  • Kishi MJ, Kashiwai M, Ware DM, Megrey BA, Eslinger DL, Werner FE, Noguchi-Aita M, Azumaya T, Fujii M, Hashimoto S. 2007. Nemuro: a lower trophic level model for the North Pacific marine ecosystem. Ecol Modell 202: 12–25. [CrossRef] [Google Scholar]
  • Klapper H. 1991. Control of eutrophication in Inland Waters. Hertfordshire, UK: Ellis Horwood Ltd. [Google Scholar]
  • Kotov A, Forró L, Korovchinsky N, Petrusek A. 2013. World checklist of freshwater Cladocera species. World Wide Web electronic publication, 38. [Google Scholar]
  • Litchman E, Ohman MD, Kiørboe T. 2013. Trait-based approaches to zooplankton communities. J Plankton Res 35: 473–484. [CrossRef] [Google Scholar]
  • Ma C, Yu H. 2013. Phytoplankton community structure in reservoirs of different trophic status, northeast China. Chin J Oceanol Limnol 31: 471–481. [CrossRef] [Google Scholar]
  • Ma C, Mwagona PC, Yu H, Sun X, Liang L, Mahboob S. 2018. Seasonal dynamics of zooplankton functional group and its relationship with physicochemical variables in high turbid nutrient-rich Small Xingkai Wetland Lake, Northeast China. J Freshw Ecol. DOI:10.1080/02705060.2018.1443847. [Google Scholar]
  • Martinet J, Descloux S, Guédant P, Rimet F. 2014. Phytoplankton functional groups for ecological assessment in young sub-tropical reservoirs: case study of the Nam-Theun 2 Reservoir, Laos, South-East Asia. J Limnol 73. DOI: [Google Scholar]
  • Marzolf G. 1990. Reservoirs as environments for zooplankton. Reservoir Limnology: Ecological Perspectives. New York: John Wiley & Sons, Inc., pp. 195–208. [Google Scholar]
  • McCauley E. 1984. The estimation of the abundance and biomass of zooplankton in samples. In: Downing JA, Rigler F, eds. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. London: Blackwell Science Publishers, pp. 228–265. [Google Scholar]
  • Meerhoff M, Iglesias C, De Mello FT, Clemente JM, Jensen E, Lauridsen TL, Jeppesen E. 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw Biol 52: 1009–1021. [CrossRef] [Google Scholar]
  • MEP (Ministry of Environmental Protection). 2002. China's National Standard: Gb3838–2002: Environmental Quality Standards for Surface Water. [Google Scholar]
  • Okuku EO, Tole M, Kiteresi LI, Bouillon S. 2016. The response of phytoplankton and zooplankton to river damming in three cascading reservoirs of the Tana river, Kenya. Lakes Reserv: Res Manag 21: 114–132. [CrossRef] [Google Scholar]
  • Persaud AD, Williamson CE. 2005. Ultraviolet and temperature effects on planktonic rotifers and crustaceans in northern temperate lakes. Freshw Biol 50: 467–476. [CrossRef] [Google Scholar]
  • Pinese OP, Pinese JF, Del Claro K. 2015. Structure and biodiversity of zooplankton communities in freshwater habitats of a vereda wetland region, Minas Gerais, Brazil. Acta Limnol Bras 27: 275–288. [CrossRef] [Google Scholar]
  • Pomerleau C, Sastri AR, Beisner BE. 2015. Evaluation of functional trait diversity for marine zooplankton communities in the northeast subarctic pacific ocean. J Plankton Res 37: 712–726. [CrossRef] [Google Scholar]
  • Quere CL, Harrison SP, Colin Prentice I, Buitenhuis ET, Aumont O, Bopp L, Claustre H, Cotrim Da Cunha L, Geider R, Giraud X. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Chang Biol 11: 2016–2040. [Google Scholar]
  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Schneider-Olt B, Adrian R. 2001. Trophic interactions between crustacean and protozoan plankton. Int Vereinigung Theor Angew Limnol: Verhandlungen 27: 3705–3707. [Google Scholar]
  • Sellami I, Hamza A, El Bour M, Mhamdi MA, Pinelalloul B, Ayadi H. 2016. Succession of phytoplankton and zooplankton communities coupled to environmental factors in the oligo-mesotrophic Nabhana reservoir (semi arid mediterranean area, central Tunisia). Zool Stud 55. DOI: 10.6620/ZS.2016.55-30 [Google Scholar]
  • Sharma AS, Gupta S, Singh NR. 2017. Zooplankton community of Keibul Lamjao National Park (KLNP) Manipur, India in relation to the physico-chemical variables of the water. Chin J Oceanol Limnol 35: 469–480. [CrossRef] [Google Scholar]
  • Shen H, Li B, Cai Q, Han Q, Gu Y, Qu Y. 2014. Phytoplankton functional groups in a high spatial heterogeneity subtropical reservoir in China. J Great Lakes Res 40: 859–869. [CrossRef] [Google Scholar]
  • Shi Y-Q, Sun S, Zhang G-T, Wang S-W, Li C-L. 2015. Distribution pattern of zooplankton functional groups in the yellow sea in June: a possible cause for geo graphical separation of giant jellyfish species. Hydrobiologia 754: 43–58. [CrossRef] [Google Scholar]
  • Šmilauer P, Lepš J. 2014. Multivariate Analysis of Ecological Data Using Canoco 5. Cambridge, UK: Cambridge University Press. [Google Scholar]
  • Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lürling M, Molinero JC, Mooij WM. 2012. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43: 429–448. [CrossRef] [Google Scholar]
  • Sommer U, Gliwicz ZM, Lampert W, Duncan A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106: 433–471. [Google Scholar]
  • Špoljar M, Habdija I, Primc‐Habdija B, Sipos L. 2005. Impact of environmental variables and food availability on rotifer assemblage in the Karstic Barrage Lake Visovac (Krka River, Croatia). Int Rev Hydrobiol 90: 555–579. [CrossRef] [Google Scholar]
  • Sun S, Huo Y, Yang B. 2010. Zooplankton functional groups on the continental shelf of the yellow sea. Deep Sea Res Part 2 Top Stud Oceanogr 57: 1006–1016. [Google Scholar]
  • Team RC. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. [Google Scholar]
  • Tessier AJ, Bizina EV, Geedey KC. 2001. Grazer: resource interactions in the plankton: are all daphniids alike. Limnol Oceanogr 46: 1585–1595. [CrossRef] [Google Scholar]
  • Thompson GA, Dinofrio EO, Alder VA. 2013. Structure, abundance and biomass size spectra of copepods and other zooplankton communities in upper waters of the southwestern Atlantic Ocean during summer. J Plankton Res 35: 610–629. [CrossRef] [Google Scholar]
  • Turner JT. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog Oceanogr 130: 205–248. [CrossRef] [Google Scholar]
  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional! Oikos 116: 882–892. [CrossRef] [Google Scholar]
  • von Rückert G, Giani A. 2008. Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? J Plankton Res 30: 1157–1168. [CrossRef] [Google Scholar]
  • Yin L, Ji Y, Zhang Y, Chong L, Chen L. 2017. Rotifer community structure and its response to environmental factors in the Backshore Wetland of Expo Garden, Shanghai. Aquac Fish 3: 90–97. [CrossRef] [Google Scholar]
  • Yoshida T, Urabe J, Elser JJ. 2003. Assessment of ‘top‐down’and ‘bottom‐up’ forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecol Res 18: 639–650. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.