Free Access
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 32
Number of page(s) 13
Published online 21 November 2018
  • Allan JD. 1995. Stream Ecology: Structure and Function of Running Waters, London: Chapman & Hall. [Google Scholar]
  • Allen NS, Hershey AE. 1996. Seasonal changes in chlorophyll a response to nutrient amendments in a North Shore tributary of Lake Superior. J N Am Benthol Soc 15: 170–178. [CrossRef] [Google Scholar]
  • Ansari AA, Gill SS, Lanza GR, Rast W, eds. 2011. Eutrophication: Causes, Consequences and Control, New York: Springer Science+Business Media B.V. [Google Scholar]
  • Biggs BJF, Kilroy C. 2000. Stream Periphyton Monitoring Manual. Prepared for the New Zealand Ministry for the Environment, Chirstchurch, New Zealand: NIWA. [Google Scholar]
  • Casartelli MR, Ferragut C. 2015. Influence of seasonality and rooted aquatic macrophytes on periphytic algal community on artificial substratum in a shallow tropical reservoir. Int Rev Hydrobiol 100: 158–168. [Google Scholar]
  • Casterlin ME, Reynolds WW. 1977. Seasonal algal succession and cultural eutrophication in a north temperate lake. Hydrobiologia 54: 99–108. [Google Scholar]
  • Cox EJ. 1996. Identification of Freshwater Diatoms from Live Material, London: Chapman & Hall. [Google Scholar]
  • Death RG, Death F, Ausseil OMN. 2007. Nutrient limitation of periphyton growth in tributaries and the mainstem of a central North Island river, New Zealand. N Z J Mar Freshwater Res 41: 273–281. [Google Scholar]
  • DeNicola DM, de Eyto E, Wemaere A, Irvine K. 2006. Periphyton response to nutrient addition in 3 lakes of different benthic productivity. J N Am Benthol Soc 25: 616–631. [CrossRef] [Google Scholar]
  • Desikachary TV. 1959. Cyanophyta, New Delhi: Indian Council of Agricultural Research. [Google Scholar]
  • Dodds WK. 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. J Phycol 39: 840–849. [Google Scholar]
  • Dodds WK, Smith VH, Lohman K. 2002. Nitrogen and phosphorus relationship to benthic algal biomass in temperate streams. Can J Fish Aquat Sci 59: 865–874. [Google Scholar]
  • Dodds WK, Smith, VH. 2016. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6: 155–164. [Google Scholar]
  • Dodds WK, Welch EB. 2000. Establishing nutrient criteria in streams. J N Am Benthol Soc 19: 186–196. [CrossRef] [Google Scholar]
  • Domingues RB, Barbosa AB, Sommer U, Galvão HM. 2011. Ammonium nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquat Sci 73: 331–343. [Google Scholar]
  • Donald DB, Bogard MJ, Finlay K, Bunting L, Leavitt PR. 2013. Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate and urea. PLoS One 8: e 53277. [Google Scholar]
  • Douterelo I, Perona E, Mateo P. 2004. Use of cyanobacteria to assess water quality in running waters. Environ Pollut 127: 377–384. [Google Scholar]
  • Elser JJ, Bracken MES, Cleland EE, Gurner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecol Lett 10: 1135–1142. [Google Scholar]
  • Fairchild GW, Lowe RL. 1984. Artificial substrates which release nutrients: effects on periphyton and invertebrate succession. Hydrobiologia 114: 29–37. [Google Scholar]
  • Fairchild GW, Lowe RL, Richardson WB. 1985. Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66: 465–472. [Google Scholar]
  • Felisberto SA, Leandrini JA, Rodrigues L. 2011. Effects of nutrients enrichment on algal communities: an experimental in mesocosms approach. Acta Limnol Bras 23: 28–137. [CrossRef] [Google Scholar]
  • Franca RCS, Lopes MRM, Ferragut C. 2009. Temporal variation of biomass and status nutrient of periphyton in shallow Amazonian Lake (Rio Branco, Brazil). Acta Limnol Bras 21: 175–183. [Google Scholar]
  • Francke JA, Den Oude PJ. 1983. Growth of Stigeoclonium and Oedogonium species in artificial ammonium-N and phosphate-P gradients. Aquat Bot 15: 375–380. [Google Scholar]
  • Francoeur SN. 2001. Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. J N Am Benthol Soc 20: 358–356. [CrossRef] [Google Scholar]
  • Glibert PM, Wilkerson FP, Dugdale RC, Raven JA, Dupont CL, Leavitt PR, Parker AE, Burkholder JM, Kana TM. 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61: 165–197. [Google Scholar]
  • Gordon ND, McMahon TA, Finlayson BL, Gippel CJ, Nathan RJ. 2013. Stream hydrology: an introduction for ecologists, 2nd ed., Chichester, UK: John Wiley & Sons, Inc. [Google Scholar]
  • Hill BH, Stevenson RJ, Pan Y, Herlihy AT, Kaufmann PR, Johnson CB. 2001. Comparison of correlations between environmental characteristics and stream diatom assemblages characterized at genus and species levels. J N Am Benthol Soc 20: 299–310. [CrossRef] [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [Google Scholar]
  • Hillebrand H, Gruner DS, Borer ET, Bracken MES, Cleland EE, Elser JJ, Harpole WS, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc Natl Acad Sci USA 104: 10904–10909. [CrossRef] [Google Scholar]
  • Jarvie HP, Neal C, Warwick A, White J, Neal M, Wickham HD, Hill LK, Andrews MC. 2002. Phosphorus uptake into algal biofilms in a lowland chalk river. Sci Total Environ 282-283: 353–373. [Google Scholar]
  • Jin L, Whitehead PG, Sarkar S, Sinha R, Futter MN, Butterfield D, Caeser J, Crossman J. 2015. Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system. Environ Sci Process Impacts 17: 1098–1110. [Google Scholar]
  • Keck F, Lepori F. 2012. Can we predict nutrient limitation in streams and rivers? Freshw Biol 57: 1410–1421. [Google Scholar]
  • Larson CA, Passy SI. 2012. Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity. FEMS Microbiol Ecol 80: 352–362. [CrossRef] [PubMed] [Google Scholar]
  • Larson CA, Passy SI. 2013. Rates of species accumulation and taxonomic diversification during phototrophic biofilm development are controlled by both nutrient supply and current velocity. Appl Environ Microbiol 79: 2054–2060. [Google Scholar]
  • Lawrence JR, Chenier MR, Roy R, Beaumier D, Fortin N, Swerhone, GDW, Neu, TR. Greer CW. 2004. Microscale and molecular assessment of impacts of nickel, nutrients and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70: 4236–4339. [Google Scholar]
  • Liboriussen L. 2003. Production, regulation and ecophysiology of periphyton in shallow freshwater lakes. PhD thesis, National Environmental Research Institute, Department of Freshwater Ecology, Faculty of Science, University of Aarhus, Denmark, 47 p. [Google Scholar]
  • Lowe RL. 1974. Environmental Requirements and Pollution Tolerances of Freshwater Diatoms, EPA-670/4-74-005, U.S. Environmental Protection Agency, Cincinnati, OH. [Google Scholar]
  • Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar, VLM. 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58: 552–559. [Google Scholar]
  • Luttenton MR, Lowe RL. 2006. Response of a lentic periphyton community to nutrient enrichment at low N:P ratios. J Phycol 42: 1007–1015. [Google Scholar]
  • Lyon DR, Ziegler SE. 2009. Carbon cycling within epilithic biofilm communities across a nutrient gradient of headwater streams. Limnol Oceanogr 54: 439–449. [Google Scholar]
  • Marks JC, Power ME. 2001. Nutrient induced changes in the species composition of epiphytes on Cladophora glomerata Kütz. (Chlorophyta). Hydrobiologia 450: 187–196. [Google Scholar]
  • Mateo P, Leganés F, Perona E, Loza V, Fernández-Piñas, F. 2015. Cyanobacteria as bioindicators and bioreporters of environmental analysis in aquatic ecosystems. Biodivers Conserv 24: 909–948. [Google Scholar]
  • Paerl HW, Hall NS, Peierls BL, Rossignol KL. 2014. Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuar Coast 37: 243–258. [CrossRef] [Google Scholar]
  • Palmer CM. 1969. A composite rating of algae tolerating organic pollution. J Phycol 5: 78–82. [CrossRef] [PubMed] [Google Scholar]
  • Pandey LK, Kumar D, Yadav A, Rai J, Gaur JP. 2014. Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecol Indic 36: 272–279. [Google Scholar]
  • Patrick R, Reimer CW. 1966. Diatoms of the United States, Exclusive of Alaska and Hawaii, Vol. I, Monograph No. 13, Philadelphia, PA: Academy of Natural Sciences of Philadelphia. [Google Scholar]
  • Patrick R, Reimer CW. 1975. The Diatoms of the United States, Vol. 2, Part 1, Monograph No. 13, Philadelphia, PA: Academy of Natural Sciences of Philadelphia. [Google Scholar]
  • Penick MD, Grubbs SA, Meier AJ. 2012. Algal biomass accrual in relation to nutrient availability and limitation along a longitudinal gradient of a karst riverine system. Int Aquat Res 4: 1–13. [CrossRef] [Google Scholar]
  • Petersen CR, Jovanovic NZ, Grenfell MC, Oberholster PJ, Cheng P. 2018. Responses of aquatic communities to physical and chemical parameters in agriculturally impacted coastal river systems. Hydrobiologia 813: 157–175. [Google Scholar]
  • Pfeiffer TZ, Mihaljević M, Stević F, Špoljarić D. 2013. Periphytic algae colonization driven by variable environmental components in a temperate floodplain lake. Ann Limnol - Int J Lim 49: 179–190. [CrossRef] [Google Scholar]
  • Phillipose MT. 1967. Chlorococcales, New Delhi: Indian Council of Agriculture Research. [Google Scholar]
  • Prescott GW. 1962. Algae of the Western Great Lakes Area, Dubuque, Iowa: Wm. C. Brown Company. [Google Scholar]
  • Prescott GW. 1978. How to know the freshwater algae, 3rd ed., Dubuque, IA: Wm. C. Brown Company. [Google Scholar]
  • Pringle CM, Bowers, JA. 1984. An in situ substratum fertilization technique: diatom colonization on nutrient-enriched, sand substrata. Can J Fish Aquat Sci 41: 1247–1251. [Google Scholar]
  • Proia L, Romaní AM, Sabater S. 2012. Nutrients and light effects on stream biofilms: a combined assessment with CLSM, structural and functional parameters. Hydrobiologia 695: 281–291. [Google Scholar]
  • Schneider SC, Lindstrøm E.-A. 2011. The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 665: 143–155. [Google Scholar]
  • Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J 27: 379–423. [CrossRef] [Google Scholar]
  • Stevenson RJ, Rier ST, Riseng CM, Schultz RE, Wiley MJ. 2006. Comparing effects of nutrients on algal biomass in streams in two regions with different disturbance regimes and with applications for developing nutrient criteria. Hydrobiologia 561: 149–165. [Google Scholar]
  • Stevenson RJ, Bennett BJ, Jordan DN, French RD. 2012. Phosphorus regulates stream injury by filamentous green algae, DO, and pH with thresholds in responses. Hydrobiologia 695: 25–42. [Google Scholar]
  • Strickland JDH, Parsons TR. 1968. A Practical Handbook of Seawater Analysis, 2nd ed., Ottawa: Fisheries Research Board of Canada. [Google Scholar]
  • Tank JL, Dodds WK. 2003. Nutrient limitation of epilithic and epixylic biofilms in 10 North American streams. Freshwater Biol 48: 1031–1049. [CrossRef] [Google Scholar]
  • Teissier S, Torre M, Delmas F, Garabétian F. 2007. Detailing biogeochemical N budgets in riverine epilithic biofilms. J N Am Benthol Soc 26: 178–190. [CrossRef] [Google Scholar]
  • Teubner K. 2000. Synchronised changes of planktonic cyanobacterial and diatom assemblages in North German waters reduce seasonality to two principal periods. Arch Hydrobiol 55: 565–580. [Google Scholar]
  • Tilman D. 1982. Resource Competition and Community Structure Princeton, NJ: Princeton University Press. [Google Scholar]
  • Townsend SA, Garcia EA, Douglas MM. 2012. The response of benthic algal biomass to nutrient addition over a range of current speeds in an oligotrophic river. Freshw Sci 31: 1233–1243. [Google Scholar]
  • Vollenweider RA. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 33: 53–83. [Google Scholar]
  • Welch EB, Jacoby JM, Horner RR, Seeley MR. 1988. Nuisance biomass levels of periphytic algae in streams. Hydrobiologia 157: 161–168. [Google Scholar]
  • Wetzel RG, Likens GE. 2000. Limnological Analyses, 3rd ed., New York: Springer. [Google Scholar]
  • Whitehead PG, Sarkar S, Jin L, Futter MN, Ceasar J, Barbour E, Butterfield D, Sinha R, Nicholls R, Hutton C, Leckie HD. 2015. Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic changes on flows and nitrogen fluxes in India and Bangladesh. Environ Sci Process Impacts 17: 1082–1097. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.