Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 67 - 77
DOI https://doi.org/10.1051/limn/2016032
Published online 13 January 2017
  • Anderson N.H., 1992. Influence of disturbance on insect communities in Pacific Northwest streams. Hydrobiologia, 248, 79–92. [CrossRef] [Google Scholar]
  • Armitage P., Cranston P.S. and Pinder L.C.V., 1995. The Chironomidae. The Biology and Ecology of Non-Biting Midges, London: Chapman & Hall, 572 p. [Google Scholar]
  • Barbour M.T., Gerritsen J., Snyder B.D. and Stribling J.B., 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second edn. U.S. Environmental Protection Agency; Office of Water, Washington, DC, 337 p. [Google Scholar]
  • Brand C. and Miserendino M.L., 2014. Biological traits and community patterns of Trichoptera at two Patagonian headwater streams affected by volcanic ash deposition. Zool. Stud., 53, 72. [CrossRef] [Google Scholar]
  • Broekhuizen N., Parkyn S. and Miller D., 2011. Fine sediment effects on feeding and growth in the invertebrate grazers Potamopyrgus antipodarum (Gastropoda, Hydrobiidae) and Deleatidium sp. (Ephemeroptera, Leptophlebiidae). Hydrobiologia, 457, 125–132. [CrossRef] [Google Scholar]
  • Brundin L., 1966. Transantarctic relationships and their significance, as evidenced by chironomid midges. With a monograph of the subfamilies Podonominae and Aphroteniinae and the Austral Heptagyiae. K. Sven. Vetenskapakadamiens Handl., 11, 1–474. [Google Scholar]
  • Brusven M.A. and Horning C.E., 1984. Effects of suspended and deposited volcanic ash on survival and behavior of stream insects. J. Kans Entomol. Soc., 57, 55–62. [Google Scholar]
  • Buendia C., Gibbins C.N., Vericat D., Batalla R.J. and Douglas A., 2013. Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecol. Ind., 25, 184–196. [CrossRef] [Google Scholar]
  • Chevenet F., Dolédec S. and Chessel D., 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwat. Biol., 31, 295–309. [CrossRef] [Google Scholar]
  • Clarke K.R., 1993. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol., 18, 117–143. [CrossRef] [Google Scholar]
  • Collier K., Parkyn S., Quinn J. and Scarsbrook M., 2002. Bouncing back: how fast can stream invertebrates recolonise? Water Atmosph. NIWA, 9–11. [Google Scholar]
  • Cranston P.S., 1995. Introduction. The Chironomidae. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds.), The Biology and Ecology of Non-biting Midges, Chapman & Hall, Britain, 1–7. [Google Scholar]
  • Cranston P.S., 2010. Lucid key to Larval Chironomidae. Available online at: http://keys.lucidcentral.org/keys/v3/Chironomidae/ [Google Scholar]
  • Cranston P.S. and Edward D.H.D., 1999. Botryocladius gen. n.: a new transantarctic genus of Orthocladiine midge (Diptera: Chironomidae). Syst. Entomol., 24, 305–333. [CrossRef] [Google Scholar]
  • Cranston P.S. and Krosch M.N., 2011. Barbadocladius Cranston & Krosch, a New Genus of Orthocladiinae (Diptera: Chironomidae) from South America. Neotrop. Entomol., 40, 560–567. [PubMed] [Google Scholar]
  • Dolédec S., Phillips N. and Townsend C., 2011. Invertebrate community responses to land use at a broad spatial scale: trait and taxonomic measures compared in New Zealand rivers. Freshwat. Biol., 56, 1670–1688. [CrossRef] [Google Scholar]
  • Edwards J.S. and Schwartz L.M., 1981. Mount St. Helens ash: a natural insecticide. Can. J. Zool., 59, 714–715. [CrossRef] [Google Scholar]
  • Edwards J.S. and Sugg P.M., 2005. Arthropods as pioneers in the regeneration of life on the pyroclastic-flow deposits of Mount St. Helens. In: Dale V.H., Swanson F.J. and Crisafulli C.M. (eds.), Ecological Responses to the 1980 Eruption of Mount St. Helens, Springer, New York, 27–138. [Google Scholar]
  • Epler J.H., 2001. Identification Manual for the larval Chironomidae (Diptera) of North and South Carolina. A Guide to the Taxonomy of the Midges of the Southeastern United States, Including Florida. Special Publication SJ2001-SP13. North Carolina. Department of Environment and Natural Resources, Raleigh, NC, and St. Johns River Water Management District, Palatka, FL, 526 p. http://home.earthlink.net/~johnepler/index.html [Google Scholar]
  • Esin E.V. and Sorokin Y.V., 2015. Effect of volcanism on environmental conditions and fauna in rivers of Eastern Kamchatka (using the example of watercourses flowing from Kikhpinych Volcano). Inland Water Biol., 8, 352–365. [CrossRef] [Google Scholar]
  • Feio M.J. and Dolédec S., 2012. Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: a case study in Portugal. Ecol. Indicators, 15, 236–247. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Gaitán J.J., Ayesa J.A., Umaña F., Raffo F. and Brand D.B., 2012. Cartografía del área afectada por la ceniza del volcán Puyehue en Río Negro y Neuquén. XIX Congreso Latinoamericano de la ciencia del suelo, XXIII Congreso Argentino de la ciencia del suelo. [Google Scholar]
  • Gallardo B., Gascón S., Quintanta X. and Comín F.A., 2011. How to choose a biodiversity Indicator redundancy and complementarity of biodiversity metrics in a freshwater ecosystem. Ecol. Indicators, 11, 1177–1184. [CrossRef] [Google Scholar]
  • García P.E. and Añón Suarez D., 2007. Community structure and phenology of chironomids (Insecta: Chironomidae) in Patagonian Andean stream. Limnology, 37, 109–117. [CrossRef] [Google Scholar]
  • Hammer Ø., Harper D.A.T. and Ryan P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9. [Google Scholar]
  • Henriques-Oliveira A.L., Nessimian J.L. and Dorvillé L.F.M., 2003. Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta Da Tijuca, Rio de Janeiro, Brazil. Braz. J. Biol., 63, 269–281. [CrossRef] [PubMed] [Google Scholar]
  • Ingvason H.R., Olafsson J.S. and Gardarsson A., 2004. Food selection of Tanytarsus gracilentus larvae (Diptera: Chironomidae): an analysis of instars and cohorts. Aquat. Ecol., 38, 231–237. [CrossRef] [Google Scholar]
  • Jones J.I., Murphy J.F., Collins A.L., Sear D.A., Naden P.S. and Armitage P.D., 2011. The impact of fine sediment on macroinvertebrates. River Res. Appl., 28, 1055–1071. [CrossRef] [Google Scholar]
  • Lallement M.E., Juárez S.M., Macchi P.J. and Vigliano P.H., 2014. Puyehue Cordón-Caulle: post-eruption analysis of changes in stream benthic fauna of Patagonia. Ecol. Aust., 24, 64–74. [Google Scholar]
  • Larsen S.E. and Ormerod S.J., 2010. Combined effects of habitat modification on trait composition and species nestedness in river invertebrates. River Res. Appl., 143, 2638–2646. [Google Scholar]
  • Mauad M., Miserendino M.L., Risso M.A. and Massaferro J., 2015. Assessing the performance of macroinvertebrate metrics in the Challhuaco-Ñireco System (Northern Patagonia, Argentina). Iheringia Sér. Zool., 105, 348–358. [CrossRef] [Google Scholar]
  • Mauad M., Siri A., Donato M., 2016. Does type of susbstratum affects chironomid larvae composition? A study in a river catchment in Northern Patagonia, Argentina. Neotrop. Entomol., DOI 10.1007/s13744-016-0429-3. [Google Scholar]
  • McElravy E.P., Lamberti G.A. and Resh V.H., 1989. Year-to-year variation in the aquatic macroinvertebrate fauna of a northern California stream. J. North Am. Benthol. Soc., 8, 51–63. [CrossRef] [Google Scholar]
  • Mc Dowall R., 1996. Volcanism and freshwater fish biogeography in the northeastern North Island of New Zealand. J. Biogeogr., 23, 139–148. [CrossRef] [Google Scholar]
  • Mcgill B.J., Enquist B.J., Weiher E. and Westoby M., 2006. Rebuilding assemblage ecology from functional traits. Trends Ecol. Evol., 21, 178–185. [CrossRef] [PubMed] [Google Scholar]
  • Minshall G.W., Robinson C.T., Royer T.V. and Rushforth S.R., 1995. Benthic community structure in two adjacent streams in Yellowstone National Park five years after the 1988 wilfires. Great Basin Nat., 55, 193–200. [Google Scholar]
  • Miserendino M.L., Archangelsky M., Brand C. and Epele L.B., 2012. Environmental changes and macroinvertebrate responses in Patagonian streams (Argentina) to ashfall from the Chaitén Volcano (May 2008). Sci. Total Environ., 424, 202–212. [CrossRef] [PubMed] [Google Scholar]
  • Nessimian J.L. and Sanseverino A.M., 1998. Trophic functional categorization of the chironomid larvae (Diptera: Chironomidae) in a first-order stream at the mountain region of Rio de Janeiro State, Brazil. Verh. Int. Verein. Limnol., 26, 2115–2119. [Google Scholar]
  • Nessimian J.L., Sanseverino A.M. and Oliveira A.L.H., 1999. Relações tróficas de larvas de Chironomidae (Diptera) e sua importância na rede alimentar em um brejo no litoral do Estado do Rio de Janeiro. Revta. Brasil. Entomol., 43, 47–53. [Google Scholar]
  • Olafsson J., 1992. A comparative study on mouthpart morphology of certain larvae of Chironomini (Diptera: Chironomidae) with reference to the larval feeding habits. J. Zool., 228, 183–204. [CrossRef] [Google Scholar]
  • Resh V.H., Brown A.V., Covich A.P., Gurtz M.E., Li H.W., Minshall G.W. and Wissmar R.C., 1988. The role of disturbance in stream ecology. J. North Am. Benthol. Soc., 7, 433–455. [CrossRef] [Google Scholar]
  • Rossaro B., 1991. Chironomids and water temperature. Aquat. Insects, 13, 87–98. [CrossRef] [Google Scholar]
  • Sæther O.A. and Cranston P.S., 2012. New world Stictocladius Edwards (Diptera: Chironomidae). Neotrop. Entomol., 41, 124–149. [CrossRef] [PubMed] [Google Scholar]
  • Serra S.R.Q., Cobo F., Graça M.A.S., Dolédec S. and Feio M.J., 2016. Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecol. Indicators, 61, 282–292. [CrossRef] [PubMed] [Google Scholar]
  • Smith K.G.V., 1989. An introduction to the immature stages of British flies: Diptera larvae, with notes on eggs, puparia and pupae. Handbooks Identif. Br. Insects., 10–280. [Google Scholar]
  • Statzner B., Dolédec S. and Hugueny B., 2004. Biological trait composition of European stream invertebrate assemblages: assessing the effects of various trait filter types. Ecogeography, 27, 470–488. [CrossRef] [Google Scholar]
  • ter Braak C.J.F. and Smilauer P., 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Microcomputer power, Itaca. [Google Scholar]
  • Thiele K., 1993. The holy grail of the perfect character: the Cladistic treatment of morphometric data. Cladistics, 9, 275–304. [CrossRef] [Google Scholar]
  • Townsend C.R., Dolédec S. and Scarsbrook M., 1997. Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwat. Biol., 37, 367–387. [CrossRef] [Google Scholar]
  • Vandewalle M., de Bello F., Berg M.P., Bolger T., Dolédec S., Dubs F., Feld C.K., Harrington R., Harrison P.A., Lavorel S., da Silva P.M., Moretti M., Niemelä J., Santos P., Sattler T., Sousa J.P., Sykes M.T., Vanbergen A.J. and Woodcock B.A., 2010. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv., 19, 2921–2947. [CrossRef] [Google Scholar]
  • Vigliano P.H., Jones A., Judd A., Planas H. and Lippolt G., 2011. Bottom gas seeps at lake Nahuel Huapi, Patagonia. Rev. Asoc. Geol. Argentina, 68, 481–490. [Google Scholar]
  • Vodopich D.S. and Cowell B.C., 1984. Interaction of factors governing the distribution of a predatory aquatic insect. Ecology, 65, 39–52. [CrossRef] [Google Scholar]
  • Ward J.V., 1992. Aquatic Insect Ecology, Part 1, Biology and Habitat, John Wiley & Sons, Inc., New York, 456 p. [Google Scholar]
  • Wiederholm T., 1984. Responses of aquatic insects to environmental pollution. In: Resh V.H. and Rosenberg D.M. (eds.). The Ecology of Aquatic Insects, New York, 508–557. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.