Free Access
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 1 - 10
Published online 09 January 2017
  • Beaugrand G., 2005. Monitoring pelagic ecosystems using plankton indicators. ICES J. Mar. Sci., 62, 333–338. [CrossRef] [Google Scholar]
  • Beaugrand G. and Kirby R.R., 2010. Climate, plankton and cod. Glob.l Change Biol., 16, 268–1280. [Google Scholar]
  • Bray R.J. and Curtis J.I., 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr., 27, 325–349. [Google Scholar]
  • Büsing N., 1998. Seasonality of Phytoplankton as an Indicator of Trophic Status of the Large Perialpine ‘Lago di Garda’. Phytoplankton and Trophic Gradients, Springer, Netherlands, 153–162. [Google Scholar]
  • Butrón A., Iriarte A. and Madariaga I., 2009. Size-fractionated phytoplankton biomass, primary production and respiration in the Nervión–Ibaizabal estuary: a comparison with other nearshore coastal and estuarine ecosystems from the Bay of Biscay. Cont. Shelf Res., 29, 1088–1102. [CrossRef] [Google Scholar]
  • Chai C., Yu Z., Shen Z., Song X., Cao X. and Yao Y., 2009. Nutrient characteristics in the Yangtze River estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Sci. Total Environ., 407, 4687–4695. [CrossRef] [PubMed] [Google Scholar]
  • Changjiang Water Resource Commission (CWRC), 1997. Study on Eco-environmental Impacts of Three Gorges Project, Hubei Science and Technology Press, Wuhan, China (in Chinese). [Google Scholar]
  • Chen S., Chen B. and Su M., 2011a. An estimation of ecological risk after dam construction in LRGR, China: changes on heavy metal pollution and plant distribution. Proc. Environ. Sci., 5, 153–159. [CrossRef] [Google Scholar]
  • Chen Y.X., Liu R.M., Sun C.C., Zhang P.P., Feng C.H. and Shen Z.Y., 2011b. Spatial and temporal variations in nitrogen and phosphorous nutrients in the Yangtze River Estuary. Mar. Pollut. Bull. 64, 2083–2089. [CrossRef] [Google Scholar]
  • Clarke K.R. and Warwick R.M., 2001. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, Plymouth Marine Laboratory, Plymouth. [Google Scholar]
  • Da Costa R.M. and Fernández F., 2002. Feeding and survival rates of the copepods Euterpina acutifrons Dana and Acartia grani Sars on the dinoflagellates Alexandrium minutum Balech and Gyrodinium corsicum Paulmier and the Chryptophyta Rhodomonas baltica Karsten. J. Exp. Mar. Biol. Ecol., 273, 131–142. [CrossRef] [Google Scholar]
  • Da Costa R.M., Franco J., Cacho E. and Fernández F., 2005. Toxin content and toxic effects of the dinoflagellate Gyrodinium corsicum (Paulmier) on the ingestion and survival rates of the copepods Acartia grani and Euterpina acutifrons. J. Exp. Mar. Biol. Ecol., 322, 177–183. [CrossRef] [Google Scholar]
  • Dai Z. and Liu J.T., 2013. Impacts of large dams on downstream fluvial sedimentation: an example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). J. Hydrol., 480, 10–18. [CrossRef] [Google Scholar]
  • Dai Z., Liu J.T., Wei W. and Chen J., 2014. Detection of the Three Gorges Dam influence on the Changjiang (Yangtze River) submerged delta. Sci. Rep., 4, 1–7. [Google Scholar]
  • Dhivert E., Grosbois C., Coynel A., Lefèvre I. and Desmet M., 2015. Influences of major flood sediment inputs on sedimentary and geochemical signals archived in a reservoir core (Upper Loire Basin, France). Catena, 126, 75–85. [CrossRef] [Google Scholar]
  • Díaz-Pardo E., Vazquez G. and López-López E., 1998. The phytoplankton community as a bioindicator of health conditions of Atezca Lake, Mexico. Aquat. Ecosyst. Health Manag., 1, 257–266. [Google Scholar]
  • Domingues R.B., Barbosa A.B. and Galvão H.M., 2014. River damming leads to decreased phytoplankton biomass and disappearance of cyanobacteria blooms. Est. Coast. Shelf Sci., 136, 129–138. [CrossRef] [Google Scholar]
  • El Bastawesy M., Gabr S. and Mohamed I., 2014. Assessment of hydrological changes in the Nile River due to the construction of Renaissance Dam in Ethiopia. Egypt. J. Remote Sens. Space Sci., 18, 65–75. [Google Scholar]
  • Feng L., Hu C., Chen X. and Song Q., 2014. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: observations from MODIS. Remote Sens. Environ., 140, 779–788. [CrossRef] [Google Scholar]
  • Friedl G. and Wüest A., 2002. Disrupting biogeochemical cycles – consequences of damming. Aquat. Sci., 64, 55–65. [Google Scholar]
  • Fu M., Wang Z., Li Y., Li R., Sun P., Wei X., Lin X. and Guo J., 2009. Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): seasonal variability. Cont. Shelf Res., 29, 2178–2194. [CrossRef] [Google Scholar]
  • Gao X. and Song J., 2005. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China. Mar. Pollut. Bull., 50, 327–335. [CrossRef] [Google Scholar]
  • Grasshoff K., Kremling K. and Manfred E., 1999. Methods of Seawater Analysis, Wiley- VCH, New York, 600 p. [Google Scholar]
  • Guerrero F. and Rodriguez V., 1998. Existence and significance of Acartia grani resting eggs (Copepoda: Calanoida) in sediments of a coastal station in the Alboran Sea (SE Spain). J. Plankton Res., 20, 305–314. [CrossRef] [Google Scholar]
  • Haghighi A.T., Marttila H. and Kløve B., 2014. Development of a new index to assess river regime impacts after dam construction. Glob. Planet Change, 122, 186–196. [Google Scholar]
  • Hallegraeff G.M., 1993. A review of harmful algal blooms and their apparent global increase. Phycology, 32, 79–99. [CrossRef] [Google Scholar]
  • Humborg C., Ittekkot V., Cociasu A. and Bodungen B., 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386, 385–388. [CrossRef] [Google Scholar]
  • Jiang Z., Liu J., Chen J., Chen Q., Yan X., Xuan J. and Zeng J., 2014. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Res., 54, 1–11. [CrossRef] [Google Scholar]
  • Jiang Z., Chen J., Zhou F., Shou L., Chen Q., Tao B., Yan X. and Wang K., 2015. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf. Cont. Shelf Res., 101, 71–84. [CrossRef] [Google Scholar]
  • Klausmeier C.A., Litchman E., Daufresne T. and Levin S., 2008. Phytoplankton stoichiometry. Ecol. Res., 23, 479–485. [CrossRef] [Google Scholar]
  • Kummu M. and Varis O., 2007. Sediment-related impacts due to upstream reservoir trapping, the lower Mekong River. Geomorphology, 85, 275–293. [CrossRef] [Google Scholar]
  • Lam-Hoai T., Guiral D. and Rougier C., 2006. Seasonal change of community structure and size spectra of zooplankton in the Kaw River estuary (French Guiana). Est. Coast. Shelf Sci., 68, 47–61. [CrossRef] [Google Scholar]
  • Li H., Tang H., Shi X., Zhang C. and Wang X., 2014. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased harmful algal blooms. Harmful Algae, 39, 92–101. [CrossRef] [Google Scholar]
  • Li X.Y., Dong S.K., Zhao Q.H. and Liu S.L., 2010. Impacts of Manwan Dam construction on aquatic habitat and community in middle reach of Lancang River. Proc. Environ. Sci., 2, 706–712. [CrossRef] [Google Scholar]
  • Liu L., Zhou J., Zheng B., Cai W., Lin K. and Tang J., 2013. Temporal and spatial distribution of red tide outbreaks in the Yangtze River estuary and adjacent waters, China. Mar. Pollut. Bull., 72, 213–221. [CrossRef] [Google Scholar]
  • Lü X.G., Qiao F.L., Xia C.S., Zhu J.R. and Yuan Y.L., 2006. Upwelling off Yangtze River estuary in summer. J. Geophys. Res., 111, 1–19. [CrossRef] [PubMed] [Google Scholar]
  • McQuoid M.R., Godhe A. and Nordberg K., 2002. Viability of phytoplankton resting stages in the sediments of a coastal Swedish fjord. Eur. J. Phycol., 37, 191–201. [CrossRef] [Google Scholar]
  • Milliman J.D., 1997. Blessed dams or damned dams? Nature, 386, 325–327. [CrossRef] [Google Scholar]
  • Morais P., Chícharo M.A. and Chícharo L., 2009. Changes in a temperate estuary during the filling of the biggest European dam. Sci. Total Environ., 407, 2245–2259. [CrossRef] [PubMed] [Google Scholar]
  • Ning X., Shi J., Cai Y. and Liu C., 2004. Biological productivity front in the Changjiang estuary and the Hangzhou Bay and its ecological effects. Acta Oceanol. Sin., 26, 96–106 (in Chinese). [Google Scholar]
  • Priddle J. and Fryxell G., 1985. Handbook of the Common Plankton Diatoms of the Southern Ocean, British Antarctic Survey, Cambridge. [Google Scholar]
  • Pu X., Wu Y. and Zhang Y., 2001. Nutrient limitation of phytoplankton in the Changjiang estuary: condition of nutrient limitation in spring. Acta Oceanol. Sin., 23, 57–65. [Google Scholar]
  • Shen H. and Hong J., 1994. Investigation report on the skeletonema costatum red tide in Changjing River Estuary-study on the phytoplankton community composition and cell morphology. Oceanol. Limnol. Sin., 25, 591–595 (in Chinese). [Google Scholar]
  • Shen H.T., 2001. Material Flux of the Changjiang Estuary, Ocean Press, Beijing (in Chinese). [Google Scholar]
  • Smayda T.J., 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr., 42, 1137–1153. [CrossRef] [Google Scholar]
  • State Oceanic Administration, 1991. Specifications for Oceanographic Survey, Standards Press of China, Beijing (in Chinese). [Google Scholar]
  • Tomas C.R., 1997. Identifying Marine Phytoplankton, Academic Press, San Diego. [Google Scholar]
  • Turley C.M., 1999. The changing Mediterranean Sea – a sensitive ecosystem? Prog. Oceanogr., 44, 387–400. [CrossRef] [Google Scholar]
  • Utermöhl H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Int. Ver. Theor. Angew. Limnol., 9, 1–38. [Google Scholar]
  • Verity P.G., 2010. Expansion of potentially harmful algal taxa in a Georgia Estuary (USA). Harmful Algae, 9, 144–152. [CrossRef] [Google Scholar]
  • Wang J.H., 2002. HAB alga nearby Changjiang Estuary. Mar. Environ. Sci., 21, 37–41. [Google Scholar]
  • Xu Y., Cai Q., Ye L., Zhou S. and Han X., 2009. Spring diatom blooming phases in a representative eutrophic bay of the Three-Gorges Reservoir, China. J. Freshwat. Ecol., 24, 191–198. [CrossRef] [Google Scholar]
  • Zhang J., Yu Z.G., Liu S.M., Xu H. and Liu M.G., 1997. Dynamics of nutrient elements in three estuaries of North China: the Luanhe, Shuangtaizihe and Yalujiang. Estuaries, 20, 110–123. [CrossRef] [Google Scholar]
  • Zhao Q., Liu S. and Dong S., 2010. Effect of dam construction on spatial-temporal change of land use: a case study of Manwan, Lancang River, Yunnan, China. Proc. Environ. Sci., 2, 852–858. [CrossRef] [Google Scholar]
  • Zhao Y., Yu Z., Song X. and Cao X., 2009. Biochemical compositions of two dominant bloom-forming species isolated from the Yangtze River Estuary in response to different nutrient conditions. J. Exp. Mar. Biol. Ecol., 368, 30–36. [CrossRef] [Google Scholar]
  • Zhou M., Shen Z. and Yu R., 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Cont. Shelf Res., 28, 1483–1489. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.