Free Access
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 355 - 364
Published online 21 October 2016
  • Arita K., Ashizawa J., Fujimoto Y., Shimada T., Hayashi S., Tamaoki M. and Yabe T., 2015. Radioactive cesium accumulation during developmental stages of largemouth bass, Micropterus salmoides. J. JSCE, Ser. G (Environ. Res.), 71, 355_225–364_231. [Google Scholar]
  • Azuma M. and Motomura Y., 1998. Feeding habits of largemouth bass in a non-native environment: the case of a small lake with bluegill in Japan. Environ. Biol. Fish, 52, 379–389. [CrossRef] [Google Scholar]
  • Cabana G. and Rasmussen J., 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl. Acad. Sci. USA, 93, 10844–10847. [Google Scholar]
  • Correa C., Bravo A.P. and Hendry A.P. 2012. Reciprocal trophic niche shifts in native and invasive fish: salmonids and galaxiids in Patagonian lakes. Freshw. Biol., 57, 1769–1781. [CrossRef] [Google Scholar]
  • Crowl T.A., 1989. Effects of crayfish size, orientation, and movement on the reactive distance of largemouth bass foraging in clear and turbid water. Hydrobiologia, 183, 133–140. [CrossRef] [Google Scholar]
  • DeNiro M.J. and Epstein S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42, 495–506. [Google Scholar]
  • Doi H., Chang K.H., Ando T., Ninomiya I., Imai H. and Nakano S.I., 2009. Resource availability and ecosystem size predict food-chain length in pond ecosystems. Oikos, 118, 138–144. [CrossRef] [Google Scholar]
  • Feiner Z.S., Rice J.A. and Aday D.D., 2013. Trophic niche of invasive white perch and potential interactions with representative reservoir species. T. Am. Fish. Soc., 142, 628–641. [CrossRef] [Google Scholar]
  • Fry B. and Sherr E.B., 1984. δ13C measurements as indicator of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci., 27, 13–47. [Google Scholar]
  • Fujimoto Y., Kawagishi M. and Shindo K., 2008. Freshwater fishes in Lake Izunuma-Uchinuma basin, Japan: distribution patterns of native species and invasive species. Izunuma–Uchinuma. Wetland. Res., 2, 13–25. (In Japanese, with English abstract). [Google Scholar]
  • García-Berthou E., 2002. Ontogenetic diet shifts and interrupted piscivory in introduced largemouth bass (Micropterus salmoides). Int. Rev. Hydrobiol., 87, 353–363. [CrossRef] [Google Scholar]
  • Ha J.Y., Izawa T., Kitano S., Nagata T., Sakamoto M. and Hanazato H., 2015. Dietary changes in an introduced largemouth bass (Micropterus salmodes) with biomanipulation in Lake Shirakaba. Jpn. J. Limol., 76, 193–201. (In Japanese, with English abstract). [CrossRef] [Google Scholar]
  • Hairston N.G. Jr. and Hairston N.G. Sr., 1993. Cause–effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat., 142, 379–411. [CrossRef] [Google Scholar]
  • Hickley P., North R., Muchiri S.M. and Harper D.M., 1994. The diet of largemouth bass, Micropterus salmoides, in Lake Naivasha, Kenya. J. Fish. Biol., 44, 607–619. [CrossRef] [Google Scholar]
  • Jang M.H., Joo G.J. and Lucas M.C., 2006. Diet of introduced largemouth bass in Korean rivers and potential interactions with native fishes. Ecol. Freshw. Fish, 15, 315–320. [Google Scholar]
  • Jennings S., Pinnegar J.K., Polunin N.V.C. and Boon T.W., 2001. Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J. Animal. Ecol., 70, 934–944. [Google Scholar]
  • Jones J.I. and Waldron S., 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshw. Biol., 48, 1396–1407. [CrossRef] [Google Scholar]
  • Keast A., 1985. The piscivore feeding guild of fishes in small freshwater ecosystems. Environ. Biol. Fish., 12, 119–129. [CrossRef] [Google Scholar]
  • Keast A. and Eadie J.M., 1985. Growth depensation in year-0 largemouth bass: the influence of diet. Trans. Am. Fish. Soc., 114, 204–213. [CrossRef] [Google Scholar]
  • Kline T.C., Wilson W.J. and Goering J.J., 1998. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska. Can. J. Fish. Aquat. Sci., 55, 1494–1502. [CrossRef] [Google Scholar]
  • Kobayashi R., Maezono Y. and Miyashita T., 2011. The importance of allochthonous litter input on the biomass of an alien crayfish in farm ponds. Popul. Ecol., 53, 525–534. [CrossRef] [Google Scholar]
  • Maezono Y., Kobayashi R., Kusahara R. and Miyashita T., 2005. Direct and indirect effect of exotic bass and bluegill on exotic and native organisms in farm ponds. Ecol. Appl., 15, 638–650. [CrossRef] [Google Scholar]
  • Magoro M.L., Whitfield A.K. and Carassou L., 2015. Predation by introduced largemouth bass, Micropterus salmoides on indigenous marine fish in the lower Kowie River, South Africa. Afr. J. Aquat. Sci., 40, 81–88. [CrossRef] [Google Scholar]
  • Matsuda K., Takagi K., Tomiya A., Enomoto M., Tsuboi J.I., Kaeriyama H., Ambe D., Fujimoto K., Ono T., Uchida K., Morita T. and Morita T., 2015. Comparison of radioactive cesium contamination of lake water, bottom sediment, plankton, and freshwater fish among lakes of Fukushima Prefecture, Japan after the Fukushima fallout. Fish. Sci., 81, 737–747. [CrossRef] [Google Scholar]
  • Mizuno T. and Kubo H., 2013. Overview of active cesium contamination of freshwater fish in Fukushima and Eastern Japan. Sci. Rep., 3, 1742. [CrossRef] [PubMed] [Google Scholar]
  • Olson M.H., 1996. Ontogenetic niche shifts in largemouth bass: variability and consequences for first-year growth. Ecology, 77, 179–190. [CrossRef] [Google Scholar]
  • Parnell A.C., Inger R., Bearhop S. and Jackson A.L., 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE, 5, e9672. [CrossRef] [PubMed] [Google Scholar]
  • Pauly D. and Christensen V., 1995. Primary production required to sustain global fisheries. Nature, 374, 255–257. [CrossRef] [Google Scholar]
  • Persaud A.D., Dillon P.J., Molot L.A. and Hargan K.E., 2012. Relationships between body size and trophic position of consumers in temperate freshwater lakes. Aquat. Sci., 74, 203–212. [CrossRef] [Google Scholar]
  • Phillips D.L. and Gregg J.W., 2001. Uncertainty in source partitioning using stable isotopes. Oecologia, 127, 171–179. [CrossRef] [PubMed] [Google Scholar]
  • Pimm S.L., 1982. Food Webs, Chapman and Hall, London. [CrossRef] [Google Scholar]
  • Post D.M., 2002a. The long and short of food-chain length. Trends. Ecol. Evol., 17, 269–277. [CrossRef] [Google Scholar]
  • Post D.M., 2002b. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83, 703–718. [CrossRef] [Google Scholar]
  • Rasmussen J.B., Rowan D.J., Lean D.R.S. and Carey J.H., 1990. Food chain structure in Ontario lakes determines PCB levels in lake trout (Salvelinus namaycush) and other pelagic fish. Can. J. Fish. Aquat. Sci., 47, 2030–2038. [CrossRef] [Google Scholar]
  • R Development Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
  • Scheffer M., 1998. Ecology of Shallow Lakes, Chapman Hall, London, UK. [Google Scholar]
  • Schindler D.E., Hodgson J.R. and Kitchell J.F., 1997. Density-dependent changes in individual foraging specialization of largemouth bass. Oecologia, 110, 592–600. [CrossRef] [PubMed] [Google Scholar]
  • Schramm H.L. Jr. and Maceina M.J., 1986. Distribution and diet of Suwannee bass and largemouth bass in the lower Santa Fe River, Florida. Environ. Biol. Fish., 15, 221–228. [CrossRef] [Google Scholar]
  • Shelton W.L., Davies W.D., Kling T.A. and Timmons T.J., 1979. Variations in the growth of the initial year class of largemouth bass in West–Point-Reservoir, Alabama and Georgia. T. Am. Fish. Soc., 108, 142–149. [CrossRef] [Google Scholar]
  • Shidara S., 1992. Social conditions surrounding Izunuma and Uchinuma Lakes. In: Advisory Committee for Environmental Preservation Measures (ed.): Report for Environmental Preservation Measures of Izunuma and Uchinuma Lakes. Miyagi Prefecture, Japan, pp. 155–164. (in Japanese). [Google Scholar]
  • Smart A.C., Harper D.M., Malaisse F., Schmitz S., Coley S. and De Beauregard A.C.G., 2002. Feeding of the exotic Louisiana red swamp crayfish, Procambarus clarkii (Crustacea, Decapoda), in an African tropical lake: lake Naivasha, Kenya. Hydrobiologia, 488, 129–142. [CrossRef] [Google Scholar]
  • Takahashi K., Onodera T. and Kumagai A., 2001. Appearance of largemouth bass and changes in species composition of fish caught by set net at Izunuma and Uchinuma. Miyagi. Pref. Rep. Fish. Sci., 1, 111–118. (in Japanese). [Google Scholar]
  • Torigoe K. and Shiraiwa T., 2010. Ecological studies of Largemouth bass (Micropterus salmoides) in Nakadoorijima, Goto islands, Nagasaki Pref. Bull. Grad. Sch. Educ. Hiroshima. Univ. Part., 2( 59), 1–7. [Google Scholar]
  • Vanderklift M.A. and Ponsard S., 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia, 136, 169–182. [CrossRef] [PubMed] [Google Scholar]
  • Vander Zanden M.J. and Rasmussen J.B., 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr., 46, 2061–2066. [CrossRef] [Google Scholar]
  • Vander Zanden M.J. and Vadeboncoeur Y., 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology, 83, 2152–2161. [CrossRef] [Google Scholar]
  • Vander Zanden M.J., Hulshof M., Ridgway M.S. and Rasmussen J.B., 1998. Application of stable isotope techniques to trophic studies of age-0 smallmouth bass. T. Am. Fish. Soc., 127, 729–739. [Google Scholar]
  • Vander Zanden M.J., Casselman J.M. and Rasmussen J.B., 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature, 401( 6752), 464–467. [CrossRef] [Google Scholar]
  • Vander Zanden M.J., Olden J.D., Thorne J.H. and Mandrak N.E., 2004. Predicting occurrences and impacts of smallmouth bass introductions in north temperate lakes. Ecol. Appl., 14, 132–148. [CrossRef] [Google Scholar]
  • Vander Zanden M.J., Vadeboncoeur Y. and Chandra S., 2011. Fish reliance on littoral–benthic resources and the distribution of primary production in lakes. Ecosystems, 14, 894–903. [CrossRef] [Google Scholar]
  • Wang Y., Yu X. and Xu J., 2011. Decreased trophic position as a function of increasing body size of a benthic omnivorous fish from the largest freshwater lake in China. Environ. Biol. Fish., 91, 505–512. [CrossRef] [Google Scholar]
  • Wasserman R.J., Strydom N.A., and Weyl O.L.F., 2011. Diet of largemouth bass, Micropterus salmoides (Centrarchidae), an invasive alien in the lower reaches of an Eastern Cape river, South Africa. Afr. Zool., 46 (2), 378–386. [CrossRef] [Google Scholar]
  • Wheeler, A.P. and Allen, M.S., 2003. Habitat and diet partitioning between shoal bass and largemouth bass in the Chipola River, Florida. T. Am. Fish. Soc., 132 (3), 438–449. [CrossRef] [Google Scholar]
  • Whittier, T.R. and Kincaid, T.M., 1999. Introduced fish in northeastern USA lakes: regional extent, dominance, and effect on native species richness. T. Am. Fish. Soc., 128 (5), 769–783. [CrossRef] [Google Scholar]
  • Yasuno N., Chiba Y., Shindo K., Shimada T., Shikano S. and Kikuchi E., 2009. Changes in the trophic state and the benthic fauna in Lake Izunuma, with special reference to the chironomid species. Izunuma–Uchinuma. Wetland. Res., 3, 49–63. (In Japanese, with English abstract). [Google Scholar]
  • Yasuno N., Chiba Y., Shindo K., Fujimoto Y., Shimada T., Shikano S. and Kikuchi E., 2012. Size-dependent ontogenetic diet shifts to piscivory documented from stable isotope analyses in an introduced population of largemouth bass. Environ. Biol. Fish., 93, 255–266. [CrossRef] [Google Scholar]
  • Yasuno N., Shikano S., Shimada T., Shindo K. and Kikuchi E., 2013. Comparison of the exploitation of methane-derived carbon by tubicolous and non-tubicolous chironomid larvae in a temperate eutrophic lake. Limnology, 14, 239–246. [CrossRef] [Google Scholar]
  • Yasuno N., Shindo K., Takagi Y., Kanaya G., Shikano S., Fujimoto Y. and Kikuchi E., 2014. Ontogenetic changes in the trophic position of a freshwater Unionidae mussel. Fundam. Appl. Limnol., 184, 341–349. [CrossRef] [Google Scholar]
  • Yasuno N., Chiba Y., Fujimoto Y., Shindo K., Shimada T., Shikano S. and Kikuchi E., 2016. Zoobenthos are minor dietary components of small omnivorous fishes in a shallow eutrophic lake. Mar. Freshw. Res, 67 (10), 1562–1568. [CrossRef] [Google Scholar]
  • Yonekura R., Kita M. and Yuma M., 2004. Species diversity in native fish community in Japan: comparison between non-invaded and invaded ponds by exotic fish. Ichthyol. Res., 51, 176–179. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.