Free Access
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 365 - 377
Published online 25 October 2016
  • Afrous A., Manshouri M., Liaghat A., Pazira E. and Sedghi H., 2011. Mercury and arsenic accumulation by three species of aquatic plants in Dezful, Iran. Afr. J. Agric. Res., 6, 5391–5397. [Google Scholar]
  • Ágoston-Szabó E., 2004. Influence of reed belt on the chemical characteristics of sediment interstitial water. Ecohydrol. Hydrobiol., 4, 67–76. [Google Scholar]
  • Alexander D., 1984. The Reclamation of Val di Chiana (Tuscany). Ann. Assoc. Am. Geogr., 74, 527–550. [CrossRef] [Google Scholar]
  • Armstrong J. and Armstrong W., 1988. Phragmites australis – a preliminary study of soil oxydizing sites and internal gas transport pathways. New Phytol., 108, 373–382. [CrossRef] [Google Scholar]
  • Armstrong J., Armstrong W. and Van der Putten W.H., 1996. Phragmites die-back: bud and root death blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytol., 133, 399–414. [CrossRef] [Google Scholar]
  • Arrigoni P.V. and Ricceri C., 1982. La vegetazione dei laghi Chiusi e di Montepulciano (Siena). Atti Soc. Tosc. Sci. Nat. Mem. Ser. B., 88, 285–299. [Google Scholar]
  • A.S.T.R.A. (Azienda Speciale Tutela Riserve e Ambiente), 2009. Guida della riserva Naturale Lago di Montepulciano. Accessed online 1 February 2016, [Google Scholar]
  • Ayeni O., Ndakidemi P., Snyman R. and Odendaal J., 2012. Assessment of Metal Concentrations, Chlorophyll Content and Photosynthesis in Phragmites australis along the Lower Diep River, Cape Town, South Africa. Energ. Environ. Res., 2, 128–139. [CrossRef] [Google Scholar]
  • Barazzuoli P., Guasparri G. and Salleolini M., 1993. Il Clima. In: Giusti F. (ed.), La storia naturale della Toscana meridionale, Pizzi Editore, Milano, 140–171. [Google Scholar]
  • Batty L.C. and Younger P.L., 2004. Growth of Phragmites australis (Cav.) Trin ex Steudel in mine water treatment wetlands: effects of metal and nutrient uptake. Environ. Pollut., 132, 85–93. [CrossRef] [PubMed] [Google Scholar]
  • Boar R.R. and Crook C.E., 1985. Investigations into the causes of reed-swamp regression in the Norfolk Broads. Verh. Internat. Verein. Limnol., 22, 2916–2919. [Google Scholar]
  • Bonanno G. and Lo Giudice R., 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol. Indic., 10, 639–645. [CrossRef] [Google Scholar]
  • Bragato C., Schiavon M., Polese R., Ertani A., Pittarello M. and Malagoli M., 2009. Seasonal variations of Cu, Zn, Ni and Cr concentration in Phragmites australis (Cav.) Trin. ex Steudel in a constructed wetland of North Italy. Desalination, 247, 36–45. [Google Scholar]
  • Calheiros C.S.C., Rangel A.O.S.S. and Castro P.M.L., 2008. The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch. Environ. Contam. Toxicol., 55, 404–414. [CrossRef] [PubMed] [Google Scholar]
  • Canullo R. and Falinska K., 2003. Ecologia Vegetale. La struttura gerarchica della vegetazione, Liguori Editore S.R.L., Napoli, p. 423. [Google Scholar]
  • Carmignani L. and Lazzarotto A., (coord.), 2004. Carta geologica della Toscana (scala 1:250.000). Università di Siena, Dipart. Scienze della Terra, Centro di GeoTecnologie, Regione Toscana, Litografia Artistica Cartografica, Firenze. [Google Scholar]
  • Čıžková H., Pechar L., Husák S., Květ J., Bauer V., Radová J. and Edwards K., 2001. Chemical characteristics of soils and pore waters of three wetland sites dominated by Phragmites australis: relation to vegetation composition and reed performance. Aquat. Bot., 69, 235–249. [CrossRef] [Google Scholar]
  • Clevering O.A. and Lissner J., 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat. Bot., 64, 185–208. [CrossRef] [Google Scholar]
  • Conti F., Abbate G., Alessandrini A. and Blasi C., (eds.), 2005. An Annotated Checklist of the Italian Vascular Flora, Palombi Editori, Roma. [Google Scholar]
  • Cortecci G. and Dinelli E., 1999. Sulfur isotopic composition of sulfate from Trasimeno, Chiusi, Montepulciano and Corbara lakes (central Italy). Mineralogica et Petrographica Acta, 42, 17–28. [Google Scholar]
  • Cortecci G., Dinelli E., Bencini A., Adorni-Braccesi A. and La Ruffa G., 2002. Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl. Geochem., 17, 79–92. [CrossRef] [Google Scholar]
  • Den Hartog C., Kvet J. and Sukopp H., 1989. Reed. A common species in decline. Aquat. Bot., 35, 1–4. [CrossRef] [Google Scholar]
  • Di Giovanni M.V., Goretti E. and Lorenzoni M., 1988. Macrobenthos ed invertebrati del sistema idrico Chiusi-Montepulciano. Riv. Idrobiol., 27, 3–38. [Google Scholar]
  • Ederli L., Reale L., Ferranti F. and Pasqualini S., 2004. Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol. Plant., 121, 66–74. [CrossRef] [PubMed] [Google Scholar]
  • Ekstam B., 1995. Ramet size equalisation in a clonal plant, Phragmites australis. Oekologia, 104, 440–446. [Google Scholar]
  • Environment Agency, 2010. The determination of easily liberated sulphide in soils and similar matrices (2010). Methods for the Examination of Waters and Associated Materials. Blue Book 228 PDF, 444KB, 48 pp. Available on-line at [Google Scholar]
  • Foggi B., Lastrucci L., Viciani D., Brunialti G. and Benesperi R., 2011. Long-term monitoring of an invasion process: the case of an isolated small wetland on a Mediterranean Island. Biologia, 66, 638–644. [CrossRef] [Google Scholar]
  • Foggi B., Benesperi R., Viciani D., Giunti M. and Lastrucci L., 2014. Long-term monitoring of an invasion process: the case of an isolated small wetland on a Mediterranean Island, second stage: toward a complete restoration. Biologia, 69, 977–985. [CrossRef] [Google Scholar]
  • Fogli S., Marchesini R. and Gerdol R., 2002. Reed (Phragmites australis) decline in a brackish wetland in Italy. Marine Env. Res., 53, 465–479. [CrossRef] [Google Scholar]
  • Gaberščik A., Urbanc-Berčič O., Kržič N., Kosi G. and Brancelj A., 2003. The intermittent Lake Cerknica: various faces of the same ecosystem. Lakes Reserv. Res. Manage., 8, 159–168. [CrossRef] [Google Scholar]
  • Ghassemzadeh F., Yousefzadeh H. and Arbab-Zavar M.H., 2008. Removing arsenic and antimony by Phragmites australis: rhizofiltration technology. J. Appl. Sci., 8, 1668–1675. [CrossRef] [Google Scholar]
  • Gigante D., Venanzoni R. and Zuccarello V., 2011. Reed dieback in southern Europe? A case study from Central Italy. C. R. Biol., 334, 327–336. [CrossRef] [PubMed] [Google Scholar]
  • Gigante D., Landucci F. and Venanzoni R., 2013. The reed die-back syndrome and its implications for floristic and vegetational traits of Phragmitetum australis. Plant Sociol., 50(1), 3–16. [Google Scholar]
  • Gigante D., Angiolini C., Landucci F., Maneli F., Nisi B., Vaselli O., Venanzoni R. and Lastrucci L., 2014. New occurrence of reed bed decline in S-Europe: do permanent flooding and chemical parameters play a role? C. R. Biol., 337, 487–498. [CrossRef] [PubMed] [Google Scholar]
  • Graveland J., 1998. Reed die-back, water level management and the decline of the great reed warbler Acrocephalus arundinaceus in the Netherlands. Ardea, 86, 187–201. [Google Scholar]
  • Haslam S.M., 2010. A Book of Reed (Phragmites australis (Cav.) Trin. ex Steudel, Phragmites communis L.). Forrest Text, UK. [Google Scholar]
  • Iannelli M.A., Pietrini F., Fiore F., Petrilli L. and Massacci A., 2002. Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol. Biochem., 40, 977–982. [CrossRef] [Google Scholar]
  • Kiviat E., 2013. Ecosystem services of Phragmites in North America with emphasis on habitat functions. AoB Plants, 5, plt008, doi: 10.1093/aobpla/plt008. [CrossRef] [Google Scholar]
  • Kubín P. and Melzer A., 1997. Chronological relationship between eutrophication and reed decline in three lakes of Southern Germany. Folia Geobot. Phytotax., 32, 15–23. [CrossRef] [Google Scholar]
  • Lambertini C., Gustafsson M.H.G., Frydenberg J., Lissner J., Speranza M. and Brix H., 2006. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Syst. Evol., 258, 161–182. [CrossRef] [Google Scholar]
  • Lambertini C., Sorrell B.K., Riis T., Olesen B., Brix H., 2012. Exploring the borders of European Phragmites within a cosmopolitan genus. AoB Plants, pls020, doi: 10.1093/aobpla/pls020. [PubMed] [Google Scholar]
  • Lastrucci L., Bonari G., Angiolini C., Casini F., Giallonardo T., Gigante D., Landi M., Landucci F., Venanzoni R. and Viciani D., 2014. Vegetation of Lakes Chiusi and Montepulciano (Siena, central Italy): updated knowledge and new discoveries. Plant Sociol., 51(2), 29–55. [Google Scholar]
  • Lucarini D., Gigante D., Landucci F., Panfili E. and Venanzoni R., 2015. The an Archive taxonomic Checklist for Italian botanical data banking and vegetation analysis: theoretical basis and advantages. Plant Biosyst., 149, 958–965, doi: 10.1080/11263504.2014.984010. [CrossRef] [Google Scholar]
  • Meyerson L.A., Lambertini C., McCormick M.K. and Whigham D.F., 2012. Hybridization of common reed in North America? The answer is blowing in the wind. AoB Plants, pls022, doi: 10.1093/aobpla/pls022. [PubMed] [Google Scholar]
  • Nechwatal J., Wielgoss A. and Mendgen K., 2008. Flooding events and rising water temperatures increase the significance of the reed pathogen Pythium phragmitis as a contributing factor in the decline of Phragmites australis. Hydrobiologia, 613, 109–115. [CrossRef] [Google Scholar]
  • Nisi B., 2005. Geochimica ed isotopi ambientali nelle acque di scorrimento superficiale della Valle dell'Arno: inquinamento antropico e naturale. PhD thesis, University of Florence, Italy, 24 March 2005, 320 p. [Google Scholar]
  • Ostendorp W., 1989. “Die-back” of reeds in Europe – a critical review of literature. Aquat. Bot., 35, 5–26. [CrossRef] [Google Scholar]
  • Ostendorp W., 1993. Reed bed characteristics and significance of reeds in landscape ecology. In: Ostendorp W. and Krummscheid-Plankert P. (eds.), Seeuferzerstörung und Seeuferrenaturierung in Mitteleuropa, Limnologie aktuell 5, Gustav-Fischer-Verlag Stuttgart, Jena, 149–160. [Google Scholar]
  • Parkhurst D.L. and Appelo C.A.J., 1999. User's guide to PHREEQC (Version 2). A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Water-Resources Investigations Report 99–4259, 312 p. [Google Scholar]
  • Ponnamperuma F.N., 1984. Effects of flooding on soils. In: Kozlowski T.T. (ed.), Flooding and Plant Growth, Academic Press, Orlando, 10–46. [Google Scholar]
  • Próchnicki P., 2005. The expansion of common reed (Phragmites australis (Cav.) Trin. ex Steud.) in the anastomosing river valley after cessation of agriculture use (Narew River valley, NE Poland). Pol. J. Ecol., 53, 353–364. [Google Scholar]
  • R Core Team, 2015. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. Accessed online 4 December 2015, [Google Scholar]
  • Ranieri E., Fratino U., Petruzzelli D. and Borges A.C., 2013. A comparison between Phragmites australis and Helianthus annuus in Chromium Phytoextraction. Water Air Soil Pollut., 224, 2–9. [CrossRef] [Google Scholar]
  • Rea N., 1996. Water levels and Phragmites: decline from lack of regeneration or dieback from shoot death. Folia Geobot. Phytotax., 31, 85–90. [CrossRef] [Google Scholar]
  • Reale L., Gigante D., Landucci F., Ferranti F. and Venanzoni R., 2012. Morphological and histo-anatomical traits reflect die-back in Phragmites australis (Cav.) Steud. Aquat. Bot., 103, 122–128. [CrossRef] [Google Scholar]
  • Reale L., Coppi A., Lastrucci L., Foggi B., Venanzoni R., Ferranti F. and Gigante D., 2014. Reed-bed decline : new occurrences of a dramatic threat to biodiversity in Central Italy. In: Biscarini C., Pierleoni A. and Abete V. (eds.), Lakes: the Mirrors of the Earth. Balancing Ecosystem Integrity and Human Wellbeing, Book of Abstracts of the 15th World Lake Conferences, Perugia, 1–5/09/2014, at Perugia, 80. ISBN: 978-88-96504-05-5. [Google Scholar]
  • Saltonstall K., 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA, 99, 2445–2449. [CrossRef] [Google Scholar]
  • Saltonstall K., Peterson P.M. and Soreng R.J., 2004. Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. SIDA Contrib. Bot., 21, 683–692. [Google Scholar]
  • Tassi F., Capecchiacci F. and Vaselli O., 2014. Migration Processes of Metal Elements from Carbon? Steel Cylinders to Food Gases. Packag. Technol. Sci., 27, 787–797, doi: 10.1002/pts.2069. [CrossRef] [Google Scholar]
  • Tomei P.E., Bertacchi A. and Guazzi E., 2000. Interventi di ripristino ambientale nella Palude di Sibolla. Quad. Ris. Nat. Paludi di Ostiglia, 1, 95–99. [Google Scholar]
  • Tulbure M.G., Johnston C.A. and Auger D.L., 2007. Rapid invasion of a great lakes coastal wetlands by non-native Phragmites australis and Typha. J. Great Lakes Res., 33(Spec. Iss. 3), 269–279. [CrossRef] [Google Scholar]
  • van der Putten W.H., 1993. The effects of litter on the growth of Phragmites australis. In: Ostendorp W. and Krumscheid-Plankert R. (eds.), Seeuferzerstörung and Seeuferrenaturierung in Mitteleuropa, Vol. 5, Limnologie Aktuell, Gustav Fisher Verlag, Stuttgart, 19–22. [Google Scholar]
  • van der Putten W.H., 1997. Die-back of Phragmites australis in European wetlands: an overview of the European research programme on reed die-back and progression (1993–1994). Aquat. Bot., 59, 263–275. [CrossRef] [Google Scholar]
  • van der Putten W.H., Peters B.A.M. and van den Berg M.S., 1997. Effects of litter on substrate conditions and growth of emergent macrophytes. New Phytol., 135, 527–537. [CrossRef] [Google Scholar]
  • van der Werff M., 1991. Common reed. In: Rozema J., Verkleij J.A.C. (eds.), Ecological Responses to Environmental Stress, Kluwer Academic Publishers, The Netherlands, 172–182. [CrossRef] [Google Scholar]
  • Velatta F., Montefameglio M., Muzzatti M., Chiappini M.M., Bonomi M. and Gigante D., 2014. Tendenze evolutive della comunità ornitica nidificante delle sponde del Lago Trasimeno (2004–2014). Alula, 21(1–2), 55–69. [Google Scholar]
  • Venturi S., Vaselli O., Rossato L., Tassi F., Nisi B., Pennisi M., Cabassi J., Bicocchi G., 2015. Anthropogenic inputs of boron in the groundwater system from an industrial area near Arezzo (Tuscany, Central Italy). Appl. Geochem., 63, 146–157. [CrossRef] [Google Scholar]
  • Weisner S.E.B., 1996. Effects of an organic sediment on performance of young Phragmites australis clone at different water depth treatments. Hydrobiology, 330, 189–194. [CrossRef] [Google Scholar]
  • Ye Z.H., Baker A.J.M., Wong M.H. and Willis A.J., 1997. Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Ann. Bot., 80, 363–370. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.