Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 243 - 252
DOI https://doi.org/10.1051/limn/2016012
Published online 18 April 2016
  • Acuna V., Giorgi A., Muñoz I., Uehlinger U.R.A. and Sabater S., 2004. Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwat. Biol., 49, 960–971. [CrossRef] [Google Scholar]
  • Aristegi L., Izagirre O. and Elosegi A., 2010. Metabolism of Basque streams measured with incubation chambers. Limnetica, 29, 301–310. [Google Scholar]
  • Armitage P.D. and Cannan C.E., 2000. Annual changes in summer patterns of mesohabitat distribution and associated macroinvertebrate assemblages. Hydrol. Process., 14, 3161–3179. [CrossRef] [Google Scholar]
  • Beisel J., Usseglio-polatera P., Thomas S. and Moreteau J., 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia, 389, 73–88. [CrossRef] [Google Scholar]
  • Beisel J.N., Usseglio-Polatera P. and Moreteau J.C., 2000. The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia, 422/423, 163–171. [CrossRef] [Google Scholar]
  • Bernot M.J., Sobota D.J., Hall R.O., Mulholland P.J., Dodds W.K. and Webster J.R., 2010. Inter-regional comparison of land-use effects on stream metabolism. Freshwat. Biol., 55, 1874–1890. [CrossRef] [Google Scholar]
  • Biggs B.J.F. and Close M.E., 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flows and nutrients. Freshwat. Biol., 22, 209–231. [CrossRef] [Google Scholar]
  • Biggs B.J.F. and Kilroy C., 2000. Stream Periphyton Monitoring Manual, Published for NZ Ministry for the Environment by NIWA, Christchurch, 76–91. [Google Scholar]
  • Bott T.L., 2006. Primary production and community respiration. In: Hauer F.R. and Lamberti G.A. (eds.), Methods in Stream Ecology (2nd edn), Academic Press, Burlington, MA, 663–690. [Google Scholar]
  • Bott T.L., Brock J.T., Cushing C.E., Gregory S.V., King D. and Petersen R.C., 1978. A comparison of methods for measuring primary productivity in streams. Hydrobiologia, 60, 3–12. [CrossRef] [Google Scholar]
  • Bott T.L., Brock J.T., Dunn C.S., Naiman R.J., Ovink R.W. and Petersen R.C., 1985. Benthic community metabolism in four temperate streams: an inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia, 123, 3–45. [CrossRef] [Google Scholar]
  • Bott T.L., Brock J.T., Baattrup-Pedersen A., Chambers P.A., Dodds W.K., Himbeault K.T., Lawrence J.R., Planas D., Snyder E. and Wolfaardt G.M., 1997. An evaluation of techniques for measuring periphyton metabolism in chambers. Can. J. Fish. Aquat. Sci., 54, 715–725. [CrossRef] [Google Scholar]
  • Boyero L., 2003. The effect of substrate texture on colonization by stream macroinvertebrates. Ann. Limnol. - Int. J. Lim., 39, 211–218. [CrossRef] [EDP Sciences] [Google Scholar]
  • Brown B.L., 2003. Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol. Lett., 6, 316–325. [CrossRef] [Google Scholar]
  • Busch D.E. and Fisher S.G., 1981. Metabolism of a desert stream. Freshwat. Biol., 11, 301–307. [CrossRef] [Google Scholar]
  • Cardinale B.J., Palmer M.A., Swan C.M., Brooks S. and Poff N.L., 2002. The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem. Ecology, 83, 412–422. [CrossRef] [Google Scholar]
  • Clapcott J.E. and Barmuta L., 2010. Metabolic patch dynamics in small headwater streams: exploring spatial and temporal variability in benthic processes. Freshwat. Biol., 55, 806–824. [CrossRef] [Google Scholar]
  • Clarke K.R. and Warwick R.M., 2001. Change in Marine Communities: An Approach To Statistical Analysis and Interpretation (2nd edn), PRIMER-E Ltd, Plymouth, UK. [Google Scholar]
  • Dodds W.K., 1991. Micro‐environmental characteristics of filamentous algal communities in flowing freshwaters. Freshwat. Biol., 25, 199–209. [CrossRef] [Google Scholar]
  • Dodds W.K. and Brock J., 1998. A portable flow chamber for in situ determination of benthic metabolism. Freshwat. Biol., 39, 49–59. [CrossRef] [Google Scholar]
  • Elosegi A., Díez J. and Mutz M., 2010. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia, 657, 199–215. [CrossRef] [Google Scholar]
  • Enríquez S., Duarte C.M., Sand-Jensen K. and Nielsen S.L., 1996. Broad-scale comparison of photosynthetic rates across phototrophic organisms. Oecologia, 108, 197–206. [CrossRef] [PubMed] [Google Scholar]
  • Fellows C.S., Clapcott J.E., Udy J.W., Bunn S.E., Harch B.D. and Smith M.J., 2006. Benthic Metabolism as an Indicator of Stream Ecosystem Health. Hydrobiologia, 572, 71–87. [CrossRef] [Google Scholar]
  • Fuss C. and Smock L., 1996. Spatial and temporal variation of microbial respiration rates in a blackwater stream. Freshwat. Biol., 36, 339–349. [CrossRef] [Google Scholar]
  • Gasith A. and Resh H.V., 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu. Rev. Ecol. Evol. Syst., 30, 51–81. [Google Scholar]
  • Gessner M.O., Swan C.M., Dang C.K., McKie B.G., Bardgett R.D. and Wall D.H., 2010. Diversity meets decomposition. Trends Ecol. Evol., 25, 372–380. [CrossRef] [Google Scholar]
  • Giraudoux P., 2013. pgirmess: Data analysis in ecology. R package version 1.5.8. http://CRAN.R-project.org/package=pgirmess. [Google Scholar]
  • González Pinzón R., Haggerty R. and Argerich A., 2014. Quantifying spatial differences in metabolism in headwater streams. Freshwat. Sci., 33, 798–811. doi: 10.1086/677555 [CrossRef] [Google Scholar]
  • Graça M.A.S., Ferreira R.C.F. and Coimbra C.N., 2001. Litter processing along a stream gradient: the role of invertebrates and decomposers. J. N. Am. Benthol. Soc., 20, 408–420. [CrossRef] [Google Scholar]
  • Grimm N.B. and Fisher S.G., 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219–228. [CrossRef] [Google Scholar]
  • Guash H., Martí E. and Sabater S., 1995. Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwat. Biol., 33, 373–383. [CrossRef] [Google Scholar]
  • Gulis V. and Suberkropp K., 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwat. Biol., 48, 123–134. [CrossRef] [Google Scholar]
  • Gustafson E.J., 1998. Quantifying landscape spatial pattern: what is the state of the art? Ecosystems, 1, 143–156. [CrossRef] [Google Scholar]
  • Hothorn T., Bretz F. and Westfall P., 2008. Simultaneous inference in general parametric models. Biomet. J., 50, 346–363. [CrossRef] [MathSciNet] [Google Scholar]
  • Hudon C. and Bourget E., 1983. The effect of light on the vertical structure of epibenthic diatom communities. Bot. Mar., 26, 317–330. [CrossRef] [Google Scholar]
  • Labasque T., Chaumery C., Aminot A. and Kergoat G., 2004. Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reliability. Mar. Chem., 88, 53–60. [CrossRef] [Google Scholar]
  • Lepori F., Palm D., Brännäs E. and Malmqvist B., 2005. Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecol. Appl., 15, 2060–2071. [CrossRef] [Google Scholar]
  • Marzolf E.R., Mulholland P.J. and Steinman A.D., 1994. Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can. J. Fish. Aquat. Sci., 51, 1591–1599. [CrossRef] [Google Scholar]
  • Molla S., Malchik L. and Casado C., 1994. Primeros datos sobre el metabolismo de un arroyo temporal mediterráneo de Sierra Morena (Córdoba). Limnetica, 10, 59–67. [Google Scholar]
  • Molla S., Maltchik L., Casado C. and Montes C., 1996. Particulate organic matter and ecosystem metabolism dynamics in a temporary Mediterranean stream. Arch. Hydrobiol., 137, 59–76. [Google Scholar]
  • Morin A., Lamoureux W. and Busnarda J., 1999. Empirical models predicting primary productivity from chlorophyll a and water temperature for stream periphyton and lake and ocean phytoplankton. J. N. Am. Benthol. Soc., 18, 299–307. [CrossRef] [Google Scholar]
  • Mulholland P.J., Fellows C.S., Tank J.L., Grimm N.B., Webster J.R., Hamilton S.K. and Peterson B.J., 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwat. Biol., 46, 1503–1517. [CrossRef] [Google Scholar]
  • O'Connor N.A., 1991. The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream. Oecologia, 85, 504–512. [CrossRef] [PubMed] [Google Scholar]
  • Odum H.T., 1956. Primary production in flowing waters. Limnol. Oceanogr., 1, 102–117. [CrossRef] [Google Scholar]
  • Oliveira V.C., Gonçalves, E.A. and Alves R.G., 2014. Colonisation of leaf litter by aquatic invertebrates in an Atlantic Forest stream. Braz. J. Biol., 74, 267–273. [CrossRef] [PubMed] [Google Scholar]
  • Palmer M.A. and Poff N.L., 1997. The influence of environmental heterogeneity on patterns and processes in streams. J. N. Am. Benthol. Soc., 16, 169–173. [CrossRef] [Google Scholar]
  • Poff N.L. and Ward J.V., 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Can. J. Fish. Aquat. Sci., 46, 1805–1818. [CrossRef] [Google Scholar]
  • Pringle C.M., Naiman R.J., Bretschko G., Karr J.R., Oswood M.W., Webster J.R., Welcomme R.L. and Winterbourn M.J., 1988. Patch dynamics in lotic systems: the stream as a mosaic. J. N. Am. Benthol. Soc., 7, 503–524. [CrossRef] [Google Scholar]
  • Rabeni C.F. and Minshall G.W., 1977. Factors affecting microdistribution of stream benthic insects. Oikos, 29, 33–43. [CrossRef] [Google Scholar]
  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. [Google Scholar]
  • Rees G.N., Bowen P.M. and Watson G.O., 2005. Variability in benthic respiration in three southeastern Australian lowland rivers. River Res. Appl., 21, 1147–1156. [CrossRef] [Google Scholar]
  • Rier S.T. and King D.K., 1996. Effects of inorganic sedimentation and riparian clearing on benthic community metabolism in an agriculturally-disturbed stream. Hydrobiologia, 339, 111–121. [CrossRef] [Google Scholar]
  • Romaní A.M. and Sabater S., 2001. Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology, 82, 3232–3245. [CrossRef] [Google Scholar]
  • Rosenfeld J. and Roff J.C., 1991. Primary production and potential availability of autochthonous carbon in southern Ontario streams. Hydrobiologia, 224, 99–109. [CrossRef] [Google Scholar]
  • Sabater S. and Romaní A.M., 1996. Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream. Hydrobiologia, 335, 107–113. [CrossRef] [Google Scholar]
  • Sabater S., Gregory S.V. and Sedell J.R., 1998. Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in a forest stream. J. Phycol., 34, 561–567. [CrossRef] [Google Scholar]
  • Southwood T.R.E., 1977. Habitat, the templet for ecological strategies? J. Anim. Ecol., 46, 337–365. [Google Scholar]
  • Sroczyńska K., Claro M., Range P., Ben-Hamadou R., Wojtal-Frankiewicz A. and Chícharo L., 2014. Substratum preferences of macroinvertebrates in a Mediterranean-type intermittent river: a tool to predict habitat suitability under future scenarios of climatic change, Conference on European Climate Change Adaptation – Research and Practice, Lisbon, Portugal from 10–12 March 2014. lower C:N and C:P ratios. [Google Scholar]
  • Suárez M.L. and Vidal-Abarca M.R., 2000. Metabolism of a semi-arid stream of south-east Spain. Verh. Internat. Verein. Theor. Angew. Limnol., 27, 756–761. [Google Scholar]
  • Townsend C.R. and Hildrew A.G., 1994. Species traits in relation to a habitat templet for river systems. Freshwat. Biol., 31, 265–275. [CrossRef] [Google Scholar]
  • Trindade M.J., Rocha F., Dias M.I. and Prudêncio M.I., 2013. Mineralogy and grain-size distribution of clay-rich rock units of the Algarve Basin (South Portugal). Clay Miner., 48, 59–83. [CrossRef] [Google Scholar]
  • Uzarski D.G., Burton T.M. and Stricker C.A., 2001. A new chamber design for measuring community metabolism in a Michigan stream. Hydrobiologia, 455, 137–155. [CrossRef] [Google Scholar]
  • Velasco J., Millan A., Vidal-Abarca M.R., Suarez M.L., Guerrero C. and Ortega M., 2003. Macrophytic, epipelic and epilithic primary production in a semiarid Mediterranean stream. Freshwat. Biol., 48, 1408–1420. [CrossRef] [Google Scholar]
  • Wallace J.B., Eggert S.L., Meyer J.L. and Webster J.R., 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science, 277, 102–104. [CrossRef] [Google Scholar]
  • Warnaars T.A., Hondzo M. and Power M.E., 2007. Abiotic controls on periphyton accrual and metabolism in streams: scaling by dimensionless numbers. Water Resour. Res., 43, 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Wasiak K.A., 2009. Studies on the Effect of Phosphorus upon Headwater Stream Ecosystem Processes, PhD dissertation, Department of Biology, University of Leicester, Leicester LE1 7RH, UK. [Google Scholar]
  • Wasiak K., Sroczyńska K., Claro M., Range P., Ben-Hamadou R., Wojtal-Frankiewicz A., and Chícharo L., 2013. Metabolic response of aquatic communities to seasonal changes in environmental variables in a Mediterranean-type intermittent river. In: Conf. on Ecohydrology, Biotechnology & Engineering, Towards the Harmony between Biogeosphere and Society on the basis of Long Term Ecosystem Research, Łódź, Poland from 16–19 September 2013. [Google Scholar]
  • Whitledge G.W. and Rabeni C.F., 2000. Benthic community metabolism in three habitats in an Ozark stream. Hydrobiologia, 437, 165–170. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.