Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 235 - 242
DOI https://doi.org/10.1051/limn/2016009
Published online 20 April 2016
  • Aptroop A. and Seaward M.R.D., 2003. Freshwater lichens. Fungal Diversity Res., 10, 101–110. [Google Scholar]
  • Barlow R.G., Cummings D.G. and Gibb S.W., 1997. Improved resolution of mono and divinyl chlorophylls a and b and zeaxanthine and luteine in phytoplancton extracts using reverve phase C-8 HPLC. Mar. Ecol. Prog. Ser., 161, 303–307. [CrossRef] [Google Scholar]
  • Coste C., 2010. New ecology and new classification for phytosociology of hydrophilic lichens in acid watercourses in France. Acte du colloque des 3 èmes rencontres Naturalistes de Midi-Pyrénées, 157–168. [Google Scholar]
  • Coxson D.S., 1988. Recovery of net photosynthesis and dark respiration on rehydration of the lichen, Cladina mitis, and the influence of prior exposure to sulphur dioxide while desiccated. New Phytol., 108, 483–487. [CrossRef] [Google Scholar]
  • Dahlman L. and Palmqvist K., 2003. Growth in two foliose tripartite lichens, Nephroma arcticum and Peltigera aphthosa: empirical modelling of external vs internal factors. Funct. Ecol., 17, 821–831. [CrossRef] [Google Scholar]
  • Demmig-Adams B., Adams W.W., Green T.G.A., Czygan F.-C. and Lange O.L., 1990. Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia, 84, 451–456. [CrossRef] [PubMed] [Google Scholar]
  • Descy J.P. and Metens A., 1996. Biomass-pigment relationships in potamoplankton. J. Plankton Res., 18, 1557–1566. [CrossRef] [Google Scholar]
  • Esseen P.-A., Olsson T., Coxson D. and Gauslaa Y., 2015. Morphology influences water storage in hair lichens from boreal forest canopies. Fungal Ecol., 18, 26–35. [CrossRef] [Google Scholar]
  • Gauslaa Y. and Solhaug K.A., 1996. Differences in the susceptibility to light stress between epiphytic of ancient and young boreal forest. Funct. Ecol., 10, 344–354. [CrossRef] [Google Scholar]
  • Gauslaa Y., Coxson D.S. and Solhaug K.A., 2012. The paradox of higher light tolerance during desiccation in rare old forest cyanolichens than in more widespread co-occurring chloro- and cephalolichens. New Phytol., 195, 812–822. [CrossRef] [PubMed] [Google Scholar]
  • Gessner M.O., 2005. Ergosterol as a measure of fungal biomass. In: Graça M.A.S., Bärlocher F. and Gessner M.O. (eds.), Methods to Study Litter Decomposition, Springer Verlag, Dordretch, The Netherlands, 189–195. [CrossRef] [Google Scholar]
  • Gessner M.O. and Chauvet E., 1993. Ergosterol to biomass conversion factors for aquatic hyphomycetes. Appl. Environ. Microbiol., 59, 502–507. [PubMed] [Google Scholar]
  • Gilbert O., 1996. The lichen vegetation of chalk and limestone streams in Britain. Lichenologist, 28, 145–159. [CrossRef] [Google Scholar]
  • Gilbert O. and Giavarini V., 1997. The lichen vegetation of acid watercourses in England. Lichenologist, 29, 347–367. [CrossRef] [Google Scholar]
  • Green T.G.A. and Lange O.L., 1995. Photosynthesys in poikilohydric plants: a comparaison of lichens and bryophytes. In: Schulze E.DW. and Caldwell M.M. (eds.), Ecophysiology of Phytosynthesis, Springer Verla, Berlin, 319–341. [CrossRef] [Google Scholar]
  • Green T.G.A., Budel B., Heber U., Meyer A., Zellner H. and Lange O.L., 1993. Differences in photosynthetic performance between cyanobacterial and green algal components of lichen photosymbiodemes measured in the field. New Phytol., 125, 723–731. [CrossRef] [Google Scholar]
  • Green T.G.A., Büdel B., Meyer A., Zellner H. and Lange O.L., 1997. Temperate rainforest lichens in New Zealand: light response of photosynthesis. N. Z. J. Bot., 35, 493–504. [CrossRef] [Google Scholar]
  • Heber U., Bilger W., Bligny R. and Lange O.L., 2000. Phototolerances of lichens, mosses and higher plants in an Alpine Environment: analysis of photoreactions. Planta, 211, 770–780. [CrossRef] [PubMed] [Google Scholar]
  • Jonsson-Cabrajic A.V., Liden M., Lundmark T., Ottosson-Löfvenius M. and Palmqvist K., 2010. Modelling hydratation and photosystem II activation in relation to in situ rain and humidity patterns: a tool to compare performance of rare and generalist epiphytic lichens. Plant Cell Environ., 33, 840–850. [PubMed] [Google Scholar]
  • Lange O.L., 2003. Photosynthetic productivity of the epilithic lichen: Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation: III. Diel, seasonal, and annual carbon budgets. Flora, 198, 277–292. [Google Scholar]
  • Lange O.L., Kilian E. and Ziegler H., 1986. Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia, 71, 104–110. [CrossRef] [PubMed] [Google Scholar]
  • Lange O.L., Bilger W., Rimke S. and Schreiber U., 1989. Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor uptake and by addition of liquid water. Bot. Acta, 102, 306–313. [CrossRef] [Google Scholar]
  • Lange O.L., Büdel B., Meyer A. and Killian E., 1993a. Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist, 25, 175–189. [CrossRef] [Google Scholar]
  • Lange O.L., Büdel B., Heber U., Meyer A., Zellner H. and Green T.G.A., 1993b. Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia, 95, 303–313. [CrossRef] [Google Scholar]
  • Lange O.L., Belnap J., Reichenberger H. and Meyer A., 1997. Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora, 1, 1–15. [Google Scholar]
  • Lange O.L., Allan Green T.G., Melzer B., Meyer A. and Zellner H., 2006. Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: Measurements during two seasons in the field and under controlled conditions. Flora, 201, 268–280. [CrossRef] [Google Scholar]
  • Liden M., Jonsson Cabrajic A.V., Ottosson-Löfvenius M., Palmqvist K. and Lundmark T., 2010. Species-specific activation times-lags can explain habitat restrictions in hydrophilic lichens. Plant Cell Environ., 33, 851–862. [PubMed] [Google Scholar]
  • Loach K., 1967. Shade tolerrance in tree seedlings 1. Leaf photosynthesis and respiration in plants raised under artificial shade. New Phytolol., 66, 607–621. [CrossRef] [Google Scholar]
  • Nascimbene J. and Nimis P.L., 2006. Freshwater lichens of the Italian Alps: a review. Ann. Limnol. - Int. J. Lim., 42, 27–32. [CrossRef] [EDP Sciences] [Google Scholar]
  • Palmqvist K. and Sundberg B., 2000. Light use efficiency of dry matter gain in five macrolichens: relative impact of microclimate conditions and species specific traits. Plant Cell Environ., 23, 1–14. [CrossRef] [Google Scholar]
  • Palmqvist K., De Los Rios A., Ascaso C. and Samuelson G., 1997. Phtosynthetic carbon acquisition in the lichens photobionts Coccomyxa and Trebouxia (Chlorophyta). Physiol. Plant., 101, 67–76. [CrossRef] [Google Scholar]
  • Palmqvist K., Campbell D., Ekblad A. and Johansson H., 1998. Photosynthetic capacity in relation to nitrogen content and its partitioning in lichens with different photobionts. Plant Cell Environ., 21, 361–372. [CrossRef] [Google Scholar]
  • Palmqvist K., Dahlman L., Valladares F., Tehler A., Sancho L.G. and Mattsson J., 2002. CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia, 133, 295–306. [CrossRef] [PubMed] [Google Scholar]
  • Richardson D.H.S., 1993. The physiology of drying and rewetting in lichens. In: Jennings D.H. (ed.), A Stress Tolerance of Fungi, University of Liverpool, Mycology series, USA, 275–296. [Google Scholar]
  • Santesson R., 1939. Über der Zonationverhältnisse der Lacustrinen Flechten einiger Seen in Anebodegebeit. Medd. Lunds. Limnel. Inst., Lund, 1, 1–70. [Google Scholar]
  • Sundberg B., Ekblad A., Näsholm T. and Palmqvist K., 1999. Lichen respiration in relation to active time, temperature, nitrogen and ergosterol concentrations. Funct. Ecol., 13, 119–125. [CrossRef] [Google Scholar]
  • Thüs H., Aptroot A. and Seaward M.R.D., 2014. Freshwater Fungi. In: Gareth Jones E.B., Hyde K.D. and Pang K-L. (eds.), De Gruyter, Berlin, 333–358. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.