Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 3, 2015
Page(s) 199 - 210
DOI https://doi.org/10.1051/limn/2015014
Published online 25 June 2015
  • Aaronson S., 1973. Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica. J. Phycol., 9, 111–113. [CrossRef] [Google Scholar]
  • Adrian R., Deneke R., Mischke U., Stellmacher R. and Lederer P., 1995. A long-term study of the Heiligensee (1975–1992). Evidence for effects of climatic change on the dynamics of eutrophied lake ecosystems. Arch. Hydrobiol., 133, 315–337. [Google Scholar]
  • Anneville O., Gammeter S. and Straile D., 2005. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshwater Biol., 50, 1731–1746. [CrossRef] [Google Scholar]
  • Cai Q., 2007. Protocols for Standard Observation and Measurement in Aquatic Ecosystems, Chinese Environmental Science Press, Beijing. [Google Scholar]
  • Deng J.M., Qin B.Q., Paerl H.W., Zhang Y.L., Ma J.R. and Chen Y.W., 2014. Earlier and warming springs increase cyanobacterial (Microcystis spp.) blooms in subtropical Lake Taihu, China. Freshwater Biol., 59, 1076–1085. [CrossRef] [Google Scholar]
  • De Senerpont Domis L., Elser J.J., Gsell A., Huszar V.L.M., Ibelings B.W., Jeppesen E., Kosten S., Mooij W., Roland F., Sommer U., Van Donk E., Winder M. and Lürling M., 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biol., 58, 463–482. [CrossRef] [Google Scholar]
  • Dong X.H., Yang X.D. and Wang R., 2006. Diatom indicative species of eutrophication of the lakes in the middle and lower reach regions of Yangtze River. China Environ. Sci., 26, 570–574. [Google Scholar]
  • Elliott J.A., 2012. Predicting the impact of changing nutrient load and temperature on the phytoplankton of England's largest lake, Windermere. Freshwater Biol., 57, 400–413. [CrossRef] [Google Scholar]
  • Elliott J.A., Jones I.D. and Thackeray S.J., 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia, 559, 401–411. [CrossRef] [Google Scholar]
  • Figueiredo D.R., Azeiteiro U.M., Esteves S.M., Goncalves F.J.M. and Pereira M.J., 2004. Microcystin-producing-blooms a serious global public health issue. Ecotox. Environ. Safe., 59, 151–163. [CrossRef] [Google Scholar]
  • Gkelis S., Papadimitriou T., Zaoutsos N. and Leonardos I., 2014. Anthropogenic and climate-induced change favors toxic cyanobacteria blooms: evidence from monitoring a highly eutrophic, urban Mediterranean lake. Harmful Algae, 39, 322–333. [CrossRef] [Google Scholar]
  • Hillebrand H., Dürselen C.D., Kirschtel D., Pollingher U. and Zohary T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Plankton Res., 35, 403–424. [Google Scholar]
  • Huang C.C., Li Y.M., Yang H., Sun D.Y., Yu Z.Y., Zhang Z., Chen X. and Xu L.J., 2014. Detection of algal bloom and factors influencing its formation in Taihu Lake from 2000 to 2011 by MODIS. Environ. Earth Sci., 71, 3705–3714. [CrossRef] [Google Scholar]
  • Huang X.F., Chen W. and Cai Q., 2000. Survey, Observation and Analysis of Lake Ecosystem, China Standards Press, Beijing. [Google Scholar]
  • Huber V., Adrian R. and Gerten D., 2008. Phytoplankton response to climate warming modified by trophic state. Limnol. Oceanogr., 53, 1–13. [CrossRef] [Google Scholar]
  • Huszar V.L.M., Silva L.H.S., Marinho M., Domingos P. and Sant'Anna C.L., 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia, 424, 67–77. [CrossRef] [Google Scholar]
  • Jeppesen E., Søndergaard M., Jensen J.P., Havens K.E., Anneville O., Carvalho L., Coveney M.F., Deneke R., Dokulil M.T., Foy B., Gerdeaux D., Hampton S.E., Hilt S., Kangur K., Köhler J., Lammens E.H.H.R., Lauridsen T.L., Manca M., Miracle M.R., Moss B., Nõges P., Persson G., Phillips G., Portielje R., Romo S., Schelske C., Straile D., Tatrai I., Willén E. and Winder M., 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwater Biol., 50, 1747–1771. [CrossRef] [Google Scholar]
  • Jeppesen E., Meerhoff M., Holmgren K., González-Bergonzoni I., Teixeira-de Mello F., Declerck S.A.J., de Meester L., Søndergaard M., Lauridsen T.L., Bjerring R., Conde-Porcuna J.M., Mazzeo N., Iglesias C., Reizenstein M., Malmquist H.J., Liu Z.W., Balayla D. and Lazzaro X., 2010. Impacts of climate warming on lake fish community structure and dynamics, and potential ecosystem effects. Hydrobiologia, 646, 73–90. [CrossRef] [Google Scholar]
  • Jöhnk K., Huisman J., Sharples J., Sommeijer B., Visser P.M. and Stroom J.M., 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol., 14, 495–512. [CrossRef] [Google Scholar]
  • Joung S.H., Seung H., Oh H.M., Ko S.R. and Ahn C.Y., 2011. Correlationas between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae, 20, 188–193. [CrossRef] [Google Scholar]
  • Körner S. and Nicklisch A., 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Plankton Res., 38, 862–871. [Google Scholar]
  • Kosten S., Huszar V.L.M., Bécares E., Costa L.S., Van Donk E., Hansson L.A., Jeppesen E., Kruk C., Lacerot G., Mazzeo N., Meester L.D., Moss B., Lürling M., Nõges T., Romo S. and Scheffer M., 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol., 18, 118–126. [CrossRef] [Google Scholar]
  • Kruk C., Mazzeo N., Lagerot G. and Reynolds C.S., 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. J. Plankton Res., 24, 901–912. [CrossRef] [Google Scholar]
  • Li D.M., Yu Y., Yang Z., Kong F.X., Zhang T.Q. and Tang S.K., 2014. The dynamics of toxic and nontoxic Microcystis during bloom in the large shallow lake, Lake Taihu, China. Environ. Monit. Assess., 186, 3053–3062. [CrossRef] [PubMed] [Google Scholar]
  • Li H.S., 2000. Plant Physiology and Biochemistry Experimental Principles and Techniques, Higher Education Press, Beijing. [Google Scholar]
  • Lichtenthaler H.K. and Buschmann C., 2001. Current Protocols in Food Analytical Chemistry. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy, Wiley, New York, pp. F 4.3.1–F 4.3.8. [Google Scholar]
  • Lund J.W.G., Kipling C. and Le Cren E.D., 1958. The inverted microscope method of estimating algalnumbers and the statistical basis of estimation by counting. Hydrobiologia, 11, 143–170. [CrossRef] [Google Scholar]
  • Lv H., Yang J., Liu L.M., Yu X.Q., Yu Z. and Chiang P.C., 2014. Temperature and nutrients are significant drivers of seasonal shift in phytoplankton community from a drinking water reservoir, subtrophical China. Environ. Sci. Pollut. R., 21, 5917–5928. [CrossRef] [Google Scholar]
  • Mcknight D., Brakke D.F. and Mulholland P.J. (ed.), 1996. Freshwater ecosystems and climate change in North America. Limnol. Oceanogr., 41, 815–1149. [CrossRef] [Google Scholar]
  • Mooij W.M., Hülsmann S., De Senerpont Domis L.N., Nolet B.A., Bodelier P.L.E., Boers P.C.M., Miguel Dionisio Pires L., Gons H.J., Ibelings B.W., Noordhuis R., Portielje R., Wolfstein K. and Lammens E.H.R.R., 2005. The impact of climate change on lakes in the Netherlands: a review. Aquat. Ecol., 39, 381–400. [CrossRef] [Google Scholar]
  • Mooij W.M., Janse J.H. and De Senerpont Domis L.N., 2007. Predicting the effect of climate change on temperate shallow lakes with the ecosystems model PCLake. Hydrobiologia, 584, 443–454. [CrossRef] [Google Scholar]
  • Padisák J., Crossetti L.O. and Naselli-Flores L., 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621, 1–19. [CrossRef] [Google Scholar]
  • Paerl H.W. and Huisman J., 2008. Climate-blooms like it hot. Science, 320, 57–58. [CrossRef] [PubMed] [Google Scholar]
  • Paerl H.W. and Huisman J., 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep., 1, 27–37. [CrossRef] [PubMed] [Google Scholar]
  • Paerl H.W., Hall N.S. and Calandrino E.S., 2001. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ., 409, 1739–1745. [CrossRef] [Google Scholar]
  • Paxinos R. and Mitchell J.G., 2000. A rapid Utermöhl method for estimating algal numbers. J. Plankton Res., 22, 2255–2262. [CrossRef] [Google Scholar]
  • Posch T., Köster O., Salcher M.M. and Pernthaler J., 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change, 2, 809–813. [CrossRef] [Google Scholar]
  • Raven J.A. and Geider R.J., 1988. Temperature and algal growth. New Phytol., 110, 441–461. [CrossRef] [Google Scholar]
  • Reynolds C.S., Huszar V., Kruk C., Naselli-Flores L. and Melo S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24, 417–428. [CrossRef] [Google Scholar]
  • Rhee G.Y. and Gotham I.J., 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr., 26, 635–648. [CrossRef] [Google Scholar]
  • Rigosi A., Carey C.C., Ibelings B.W. and Brookes J.D., 2014. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr., 59, 99–114. [CrossRef] [Google Scholar]
  • Rippka R., Deruelles J., Waterbury J., Herdman M. and Stanier R., 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol., 111, 1–61. [CrossRef] [Google Scholar]
  • Salmaso N. and Padisák J., 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia, 578, 97–112. [CrossRef] [Google Scholar]
  • Slim K., Fadel A., Atoui A., Lemaire B.J., Vincon-Leite B. and Tassin B., 2014. Global warming as a driving factor for cyanobacterial bloom in Lake Karaoun, Lebanon. Desalin. Water Treat., 52, 2094–2101. [CrossRef] [Google Scholar]
  • Sommer U. and Lengfellner K., 2008. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob. Change Biol., 14, 1199–1208. [CrossRef] [Google Scholar]
  • Staehr P. A. and Sand-Jensen K., 2006. Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities. Freshwater Biol., 51, 249–262. [CrossRef] [Google Scholar]
  • Sun J. and Liu D.Y., 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res., 25, 1331–1346. [CrossRef] [Google Scholar]
  • Tadonléké R.D., 2010. Evidence of warming effects on phytoplankton productivity rates and their dependence on eutrophication status. Limnol. Oceanogr., 55, 973–982. [CrossRef] [Google Scholar]
  • Tan X., Kong F.X., Yu Y., Shi X.L. and Zhang M., 2009. Effects of enhanced temperature on algae recruitment and phytoplankton community succession. China Environ. Sci., 29, 578–582 (in Chinese). [Google Scholar]
  • Taranu Z.E., Zurawell R.W., Pick F. and Eavas I.G., 2012. Predicting cyanobacterial dynamics in the face of global change: the importance of scale and environmental context. Glob. Change Biol., 18, 3477–3490. [CrossRef] [Google Scholar]
  • Ter Braak C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179. [CrossRef] [Google Scholar]
  • Thackeray S.J., Jones I.D. and Maberly S.C., 2008. Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climate change. J. Ecol., 96, 523–535. [CrossRef] [Google Scholar]
  • Venrick E.L., 1978. How many cells to count? In: Sournia A. (ed.), Monographs on Oceanographic Methods 6: Phytoplankton Manual. United Nations Educational Methods 6, Scientific and Cultural Organization, pp. 167–180. [Google Scholar]
  • Wagner C. and Adrian R., 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnol. Oceanogr., 54(6 part 2), 2460–2468. [CrossRef] [Google Scholar]
  • Winder M. and Schindler D.E., 2004. Climatic effects on the phenology of lake processes. Glob. Change Biol., 10, 1844–1856. [CrossRef] [Google Scholar]
  • Wu W.J., Li G.B., Li D.H. and Liu Y.D., 2010. Temperature may be the dominating factor on the alternant succession of Aphanizomenon flos-aquae and Microcystis aeruginosa in Dianchi Lake. Fresenius Environ. Bull., 19, 846–853. [Google Scholar]
  • Xia J., Qian P.D. and Zhu W., 2009. Study on causes of early blue-green algae bloom in Tai Lake in 2007. Sci. Meteoro. Sinica., 29, 531–535 (in Chinese). [Google Scholar]
  • Xiao L.J., Wang T., Hu R., Han B.P., Wang S., Qian X. and Padisák J., 2011. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Res., 45, 5099–5109. [CrossRef] [PubMed] [Google Scholar]
  • Zhang M., Duan H.T., Shi X.L., Yu Y. and Kong F.X., 2012. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Res., 46, 442–452. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.