Free Access

This article has an erratum: [erratum]

Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 3, 2015
Page(s) 189 - 198
DOI https://doi.org/10.1051/limn/2015013
Published online 27 May 2015
  • Angeler D.G., Alvarez-Cobelas M., Rojo C. and Sànchez-Carillo S., 2000. The significance of water inputs to plankton biomass and trophic relationships in a semi-arid freshwater wetland (central Spain). J. Plankton Res., 22, 2075–2093. [CrossRef] [Google Scholar]
  • APHA, 1989. Standard Methods for the Examination of Water and Wastewater (17th edn), American Public Health Association, Washington, DC, 1268 p. [Google Scholar]
  • Becker N., 2006. Microbial control of mosquitoes: Management of the Upper Rhine mosquito population as a model programme. In: Eilenberg J. and Hokkanen H.M.T. (eds.), An Ecological and Societal Approach to Biological Control, Springer Verlag, Berlin, 227–245. [CrossRef] [Google Scholar]
  • Becker N., Petric D., Zgomba M., Boase C., Dahl C., Lane J. and Kaiser A., 2003. Mosquitoes and their Control, Kluwer Academic/Plenum Publishers, New York, 345–375. [CrossRef] [Google Scholar]
  • Boisvert M. and Boisvert J., 2000. Effects of Bacillus thuringiensis var. israelensis on target and nontarget organisms: a review of laboratory and field experiments. Biocontrol Sci. Technol., 10, 517–561. [CrossRef] [Google Scholar]
  • Bolker B.M., Brooks M.E., Clark C.J., Geange S.W., Poulsen J.R., Stevens M.H.H. and White J.-S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol., 24, 127–135. [CrossRef] [PubMed] [Google Scholar]
  • Caquet T., Roucaute M., Le Goff P. and Lagadic L., 2011. Effects of repeated field applications of two formulations of Bacillus thuringiensis var. israelensis on non-target saltmarsh invertebrates in Atlantic coastal wetlands. Ecotox. Environ. Safe., 74, 1122–1130. [CrossRef] [Google Scholar]
  • Demisse D.D., 2013. Influence of nutrients and integrated mosquito management tactics on mosquitoes and their habitat microbiomes. PhD thesis, University of California, Riverside, 169 p. [Google Scholar]
  • Despres L., Lagneau C. and Frutos R., 2011. Usingthebio-insecticide Bacillus thuringiensis israelensis in mosquito control. In: Stoytcheva M. (ed.), Pesticides in the Modern World – Pests Control and Pesticides Exposure and Toxicity Assessment, In Tech, Rijeka, Croatia, 93–126. [Google Scholar]
  • Dixit A.S., Dixit S.S. and Smol J.P., 1992. Long-term trends in lake water pH and metal concentrations inferred from diatoms and chrysophytes in three lakes near Sudbury, Ontario. Can. J. Fish. Aquat. Sci., 49, 17–24. [CrossRef] [Google Scholar]
  • Duchet C., Larroque M., Caquet T., Franquet E., Lagneau C. and Lagadic L., 2008. Effects of spinosad and Bacillus thuringiensis israelensis on a natural population of Daphnia pulex in field microcosms. Chemosphere, 74, 70–77. [CrossRef] [PubMed] [Google Scholar]
  • Duchet C., Caquet T., Franquet E., Lagneau C. and Lagadic L., 2010. Influence of environmental factors on the response of a natural population of Daphnia magna (Crustacea: Cladocera) to spinosad and Bacillus thuringiensis israelensis in Mediterranean coastal wetlands. Environ. Pollut., 15, 1825–1833. [CrossRef] [Google Scholar]
  • Eigemann F., Hilt S., Salka I. and Grossart H.P., 2013. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community. FEMS Microbiol. Ecol., 83, 650–663. [CrossRef] [PubMed] [Google Scholar]
  • Fournier D.A., Skaug H.J., Ancheta J., Ianelli J., Magnusson A., Maunder M., Nielsen A. and Sibert J., 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw., 27, 233–249. [CrossRef] [Google Scholar]
  • Goldsborough L.G., 2001. Sampling algae in wetlands. In: Russell B.R., Batzer D.P. and Wissinger S.A. (eds.), Bioassessment and Management of North American Freshwater Wetlands, Wiley., 263–295. [Google Scholar]
  • Goldsborough L.G. and Robinson G.G.C., 1996. Pattern in wetlands. In: Stevenson R.J., Bothwell M.L. and Lowe R.L. (eds.), Algalecology: Freshwater Benthic Ecosystems, Academic Press, San Diego, 77–117. [Google Scholar]
  • Hagen K.H., 2009. Algae, Nutrition, Pollution Control and Energy Sources, New Science Publ., New York, 265–300. [Google Scholar]
  • Hershey A.E., Lima A.R., Niemi G.J. and Regal R.R., 1998. Effects of Bacillus thuringiensis israelensis (Bti) and methoprene on nontarget macroinvertebrates in Minesota wetlands. Ecol. Appl., 8, 41–60. [CrossRef] [Google Scholar]
  • Hutchinson G.E., 1967. A Treatise on Limnology, II. Introduction to Lake Biology and the Limnoplankton, Wiley, New York, 1115 p. [Google Scholar]
  • Kaufman M.G., Chen S. and Walker E.D., 2008. Leaf-associated bacterial and fungal taxa shifts in response to larvae of the tree hole mosquito, Onchlerotatus triseriatus. Microb. Ecol., 55, 673–684. [CrossRef] [PubMed] [Google Scholar]
  • Kirkman L.K., Whitehead E.A., Golladay S.W., Smith L.L. and Opsahl S.P., 2011. A research framework for identifying potential linkages between isolated wetlands and disease ecology. Ecol. Res., 26, 875–883. [CrossRef] [Google Scholar]
  • Komàrek J. and Anagnostidis K., 1999. Süsswasserflora von Mitteleuropa. Band 19/1. Cyanoprokaryota 1. Teil: Chroococcales, Spektrum Akademischer Verlag, Heidelberg, Berlin, 548 p. [Google Scholar]
  • Komàrek J. and Anagnostidis K., 2005. Süsswasserflora von Mitteleuropa. Band 19/2. Cyanoprokaryota 1. Teil: Oscillatoriales, Elsevier- Spektrum Akademischer Verlag, Heidelberg, Munich, 759 p. [Google Scholar]
  • Koskella J. and Stotzky G., 2002. Larvicidal toxins from Bacillus thuringiensis subspp. kurstaki, morrisoni (strain tenebrionis), and israelensis have no microbicidal or microbiostatic activity against selected bacteria, fungi, and algae in vitro. Can. J Microbiol. 48, 262–267. [CrossRef] [PubMed] [Google Scholar]
  • Krammer K. and Lange-Bertalot H., 1986. In: Ettl H., Gerloff J., Heynig H. and Mollenauseer D. (eds.), Süsswasserflora von Mitteleuropa. T1: Bacillariophyceae : Naviculaceae, Band 2/1, Gustav Fisher Verlag publ., Stuttgart, 876 p. [Google Scholar]
  • Krammer K. and Lange-Bertalot H., 1988. In: Ettl H., Gerloff J., Heynig H. and Mollenauseer D. (eds.), Süsswasserflora von Mitteleuropa. T2: Bacillariophyceae : Epithemiaceae. Surirellaceae, Band 2/2, Gustav Fisher Verlag Publ., Stuttgart, 596 p. [Google Scholar]
  • Krammer K. and Lange-Bertalot H., 1991a. In: Ettl H., Gerloff J., Heynig H. and Mollenauseer D. (eds.), Süsswasserflora von Mitteleuropa. T3: Bacillariophyceae: Centrales. Fragilariaceae. Eunotiacea, Band 2/3, Gustav Fisher Verlag Publ, Stuttgart, 576 p. [Google Scholar]
  • Krammer K. and Lange-Bertalot H., 1991b. In: Ettl H., Gerloff J., Heynig H. and Mollenauseer D. (eds.), Süsswasserflora von Mitteleuropa. T4 : Bacillariophyceae : Achnantaceae, Band 2/4, Gustav Fisher Verlag Publ., Stuttgart, 437 p. [Google Scholar]
  • Lacey L.A. and Merritt D.L., 2004. The safety of bacterial microbial agents used for black fly and mosquito control in aquatic environments. In: Hokkanen H.M.T. and Hajek A.E. (eds.), Environmental Impacts of Microbial Insecticides: Need and Methods for Risk Assessment, Kluwer Academic Publ., Dordrecht, 151–168. [Google Scholar]
  • Lacoursière J.O. and Boisvert J., 2004. Le Bacillus thuringiensis et le contrôle des insectes piqueurs au Québec. ENV/2004/0278, Ministère de l'Environnement Québequois, Québec, 101 p. [Google Scholar]
  • Lagadic L., Caquet T., Fourcy D. and Heydorff, M., 2002. Évaluation à long terme des effets de la démoustication dans le Morbihan. Suivi de l'impact écotoxicologique des traitements sur les invertébrés aquatiques entre 1998 et 2001. Scientific Report. April 2002. Research Agreement Conseil Général du Morbihan, 215 p. [Google Scholar]
  • Lagadic L., Roucaute M. and Caquet T., 2014. Bti sprays do not adversely affect non-target aquatic invertebrates in French Atlantic coastal wetlands. J. Appl. Ecol., 51, 102–113. [CrossRef] [Google Scholar]
  • Lowe R.L. and Pan Y., 1996. Benthic algal communities as biological monitors. In: Algal Ecology, 753 p. [Google Scholar]
  • Lundström J.O., Brodin Y., Schäfer M.L., Vinnersten T.Z.P. and Östman Ö., 2010a. High species richness of Chironomidae (Diptera) in temporary flooded wetlands associated with high species turn-over rates. Bull. Entomol. Res., 100, 433–444. [CrossRef] [Google Scholar]
  • Lundström J.O., Schäfer M.L., Petersson E., Vinnersten T.Z.P., Landin J. and Brodin Y., 2010b. Production of wetlands Chironomidae (Diptera) and the effects of using Bacillus thuringiensis israelensis for mosquito control. Bull. Entomol. Res., 100, 117–125. [CrossRef] [Google Scholar]
  • Mainstone C.P. and Parr W., 2002. Phosphorus in rivers-ecology and management. Sci. Total Environ., 282–283, 25–47. [CrossRef] [PubMed] [Google Scholar]
  • Marten G.G., 2007. Larvicidal algae. Am. Mosq. Control Assoc. Bull., 7, 177–183. [CrossRef] [Google Scholar]
  • Merritt R.W., Dadd R.H. and Walker E.D., 1992. Feeding behavior, natural food and nutritional relationships of larval mosquitoes. Annu. Rev. Entomol., 37, 349–376. [CrossRef] [PubMed] [Google Scholar]
  • Niemi G.J., Hershey A.E., Shannon L., Hanowski J.M., Lima A., Axler R.P. and Regal R.R., 1999. Ecological effects of mosquito control on zooplankton, insects and birds. Environ. Toxicol. Chem., 18, 549–559. [CrossRef] [Google Scholar]
  • Nuccio C., Melillo C., Massia L. and Innamorati M., 2003. Phytoplankton abundance, community structure and diversity in the eutrophic Orbetello lagoon (Tuscany) from 1995 to 2001. Oceanol. Acta, 26, 15–25. [CrossRef] [Google Scholar]
  • OECD, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. Organisation for Economic CoOperation and Development (publié en français sous le titre « Eutrophication des Eaux, Méthodes de Surveillance, d'Evaluation et de Lutte »), Paris, 154 p. [Google Scholar]
  • Östman Ö., Lundström J.O. and Vinnersten T.Z.P., 2008. Effects of mosquito larvae removal with Bacillus thuringiensis israelensis (Bti) on natural protozoan communities. Hydrobiology, 607, 231–235. [CrossRef] [Google Scholar]
  • Pan Y. and Stevenson R.J., 1996. Gradient analysis of diatom communities in western Kentucky wetlands. J. Phycol., 32, 222–232. [CrossRef] [Google Scholar]
  • Poulin B., Lefebvre G. and Paz L., 2010. Red flag for green spray: adverse trophic effects of Bti on breeding birds. J. Appl. Ecol., 47, 884–889. [CrossRef] [Google Scholar]
  • Reavie E.D., Smol J.P. and Carmichael N.B., 1995. Postsettlement eutrophication histories of six British Columbia (Canada) lakes. Can. J. Fish. Aquat. Sci., 52, 2388–2401. [CrossRef] [Google Scholar]
  • Reim R.L., Shane M.S. and Cannon R.E., 1974. The characterization of a Bacillus capable of blue-green bactericidal activity. Can. J. Microbiol., 20, 981–986. [CrossRef] [PubMed] [Google Scholar]
  • Robinson G.G.C., Gurney S.E. and Goldsborough L.G., 1997. The primary productivity of benthic and planktonic algae in a prairie wetland under controlled water-level regimes. Wetlands, 17, 182–194. [CrossRef] [Google Scholar]
  • Russell R.C., 1999. Constructed wetlands and mosquitoes: health hazards and management options — an Australian perspective. Ecol. Eng., 12, 107–124. [CrossRef] [Google Scholar]
  • Russell T.L., Kay B.H. and Skilleter G.A., 2009. Environmental effects of mosquito insecticides on saltmarsh invertebrate fauna. Aquat. Biol., 6, 77–90. [CrossRef] [Google Scholar]
  • Sheath R.G. and Wehr J.D., 2003. Introduction to freshwater algae. In: Wehr J.D. and Sheath R.G. (eds.), Freshwater Algae of North America: Ecology and Classification, Academic Press, San Diego, 1–9. [CrossRef] [Google Scholar]
  • Skerratt J.H., Bowman J.P., Hallegraeff G., James S. and Nichols P.D., 2002. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar. Ecol. Prog. Ser., 244, 1–15. [CrossRef] [Google Scholar]
  • Su T. and Mulla M.S., 1999. Microbial agents Bacillus thuringiensis ssp. Israelensis and Bacillus sphaericus suppress eutrophication, enhance water quality, and control mosquitoes in microcosms. Environ. Entomol., 28, 761–767. [CrossRef] [Google Scholar]
  • Walton W.E., 2002. Multipurpose constructed treatment wetlands in the arid southwestern United States: Are the benefits worth the risks. In: Pries J. (ed.), Treatment Wetlands for Water Quality Improvement: Quebec 2000 Conference Proceedings (Selected Papers), CH2M Hill Canada Limited, Pandora Press, Waterloo, Ontario, Canada, 115–123. [Google Scholar]
  • Wegner E., 2006. Mosquito control programme implemented in Wilanów (Warsaw, Poland) in summer 2002. Eur. Mosq. Bull., 21, 14–18. [Google Scholar]
  • Weilhoefer C.L. and Pan Y., 2007. Relationships between Diatoms and environmental variables in wetlands in the Willamette valley. Oregon, USA. Wetlands, 27, 668–682. [CrossRef] [Google Scholar]
  • Wotowski K. and Hindàk F., 2005. Atlas of Euglenophytes, Publishing House of the Slovak Academy of Sciences, 136 p. [Google Scholar]
  • Wu X. and Mitsch W.J., 1998. Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands, 18, 9–20. [CrossRef] [Google Scholar]
  • Xu Y., Chen S., Kaufman M.G., Maknojia S. and Bagdsarian M., 2008. Bacterial community structure in tree hole habitats of Ochlerotatus triseiatus: influences of larval feeding. J. Am. Mosq. Control. Assoc., 24, 219–227. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.